ijelid-indobertweet
This model is a fine-tuned version of indolem/indobertweet-base-uncased on the Indonesian-Javanese-English code-mixed Twitter dataset.
Label ID and its corresponding name:
Label ID | Label Name |
---|---|
LABEL_0 | English (EN) |
LABEL_1 | Indonesian (ID) |
LABEL_2 | Javanese (JV) |
LABEL_3 | Mixed Indonesian-English (MIX-ID-EN) |
LABEL_4 | Mixed Indonesian-Javanese (MIX-ID-JV) |
LABEL_5 | Mixed Javanese-English (MIX-JV-EN) |
LABEL_6 | Other (O) |
It achieves the following results on the evaluation set:
- Loss: 0.2804
- Precision: 0.9323
- Recall: 0.9394
- F1: 0.9356
- Accuracy: 0.9587
It achieves the following results on the test set:
- Overall Precision: 0.9326
- Overall Recall: 0.9421
- Overall F1: 0.9371
- Overall Accuracy: 0.9643
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 386 | 0.1666 | 0.8968 | 0.9014 | 0.8982 | 0.9465 |
0.257 | 2.0 | 772 | 0.1522 | 0.9062 | 0.9368 | 0.9206 | 0.9517 |
0.1092 | 3.0 | 1158 | 0.1462 | 0.9233 | 0.9335 | 0.9280 | 0.9556 |
0.0739 | 4.0 | 1544 | 0.1563 | 0.9312 | 0.9361 | 0.9336 | 0.9568 |
0.0739 | 5.0 | 1930 | 0.1671 | 0.9224 | 0.9413 | 0.9312 | 0.9573 |
0.0474 | 6.0 | 2316 | 0.1719 | 0.9303 | 0.9394 | 0.9346 | 0.9578 |
0.0339 | 7.0 | 2702 | 0.1841 | 0.9249 | 0.9389 | 0.9314 | 0.9576 |
0.0237 | 8.0 | 3088 | 0.2030 | 0.9224 | 0.9380 | 0.9297 | 0.9570 |
0.0237 | 9.0 | 3474 | 0.2106 | 0.9289 | 0.9377 | 0.9331 | 0.9576 |
0.0185 | 10.0 | 3860 | 0.2264 | 0.9277 | 0.9389 | 0.9330 | 0.9571 |
0.0132 | 11.0 | 4246 | 0.2331 | 0.9336 | 0.9344 | 0.9339 | 0.9574 |
0.0101 | 12.0 | 4632 | 0.2403 | 0.9353 | 0.9375 | 0.9363 | 0.9586 |
0.0082 | 13.0 | 5018 | 0.2509 | 0.9311 | 0.9373 | 0.9340 | 0.9582 |
0.0082 | 14.0 | 5404 | 0.2548 | 0.9344 | 0.9351 | 0.9346 | 0.9578 |
0.0062 | 15.0 | 5790 | 0.2608 | 0.9359 | 0.9372 | 0.9365 | 0.9588 |
0.005 | 16.0 | 6176 | 0.2667 | 0.9298 | 0.9407 | 0.9350 | 0.9587 |
0.0045 | 17.0 | 6562 | 0.2741 | 0.9337 | 0.9408 | 0.9371 | 0.9592 |
0.0045 | 18.0 | 6948 | 0.2793 | 0.9342 | 0.9371 | 0.9355 | 0.9589 |
0.0035 | 19.0 | 7334 | 0.2806 | 0.9299 | 0.9391 | 0.9342 | 0.9588 |
0.0034 | 20.0 | 7720 | 0.2804 | 0.9323 | 0.9394 | 0.9356 | 0.9587 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.7.1
- Datasets 2.5.1
- Tokenizers 0.12.1
- Downloads last month
- 29
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.