fblgit's picture
Adding Evaluation Results (#1)
3f38bdf verified
---
license: apache-2.0
library_name: transformers
tags:
- juanako
- UNA
datasets:
- fblgit/tree-of-knowledge
- Open-Orca/SlimOrca-Dedup
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: una-cybertron-7b-v1-fp16
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.43
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.42
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.34
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.28
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v1-fp16
name: Open LLM Leaderboard
---
# Model Card for una-cybertron-7b-v1 (UNA: Uniform Neural Alignment)
We strike back, introducing **Cybertron 7B v1** a 7B MistralAI based model, best on it's series. Trained on SFT, DPO and UNA (Unified Neural Alignment) on multiple datasets.
He scores **64.60**+ on HF LeaderTests (without DROP for now).
Scoring **#1** at 2 December 2023:
| Model | Average | ARC (25-s) | HellaSwag (10-s) | MMLU (5-s) | TruthfulQA (MC) (0-s) | Winogrande (5-s) | GSM8K (5-s) |
| --- | --- | --- | --- | --- | --- | --- | --- |
| [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 60.97 | 59.98 | 83.31 | 64.16 | 42.15 | 78.37 | 37.83 |
| [perlthoughts/Chupacabra-7B-v2](https://huggingface.co/perlthoughts/Chupacabra-7B-v2) | 63.54 | 66.47 | 85.17 | 64.49 | 57.6 | 79.16 | 28.35 |
| [fblgit/una-cybertron-7b-v1](https://huggingface.co/fblgit/una-cybertron-7b-v1) | **64.60** | **68.17** | 85.14 | 62.07 | **63.98** | **80.9** | 27.34 |
The model excels in mathematics, logic, reasoning, overall very smart.
## Model Details
Adiestrated with UNA: Uniform Neural Alignment technique (paper going out soon).
### Model Description
- **Developed by:** [juanako.ai](https://juanako.ai)
- **Author:** [Xavier M.]([email protected])
- **Model type:** MistralAI 7B
- **Funded by Cybertron's H100's**
### Prompt
The model is very good, works well on almost any prompt but ChatML format and Alpaca System gets the best
```
<|im_start|>system
- You are a helpful assistant chatbot trained by MosaicML.
- You answer questions.
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
<|im_start|>user
Explain QKV<|im_end|>
<|im_start|>assistant
```
```
### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!
### Human: Explain QKV
### Assistant:
```
```
[Round <|round|>]
问:Explain QKV
答:
```
```
[Round <|round|>]
Question:Explain QKV
Answer:
```
```
Question:Explain QKV
Answer:
```
## Evaluation
```
| Tasks |Version|Shots | Metric |Value | |Stderr|
|--------------|-------|------|--------|-----:|---|-----:|
|arc_challenge | | 25 |acc_norm|0.6817|± |0.0136|
|truthfulqa_mc2| | 0 |acc |0.6398|± |0.0151|
|hellaswag | | 10 |acc_norm|0.8492|± |0.0036|
|winogrande | | 0 |acc |0.809 |± |0.011 |
|gsm8k | | 5 |acc |0.2733|± |0.0137|
|mmlu | | 5 |acc |0.6207|± |0.1230|
| |average| |acc |0.6456| | |
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.6207|_ |0.1230|
| - humanities |N/A |none | 5|acc |0.5675|_ |0.1125|
| - other |N/A |none | 5|acc |0.6933|_ |0.1108|
| - social_sciences|N/A |none | 5|acc |0.7270|_ |0.0666|
| - stem |N/A |none | 5|acc |0.5249|_ |0.1311|
```
### Framework versions
- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
### Citations
If you find Cybertron, Juanako or any of our models useful, specially if you use it for your big brand.. cite please:
```
@misc{unacybertron7a,
title={Cybertron: Uniform Neural Alignment},
author={Xavier Murias},
year={2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/fblgit/una-cybertron-7b-v1}},
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__una-cybertron-7b-v1-fp16)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.49|
|AI2 Reasoning Challenge (25-Shot)|68.43|
|HellaSwag (10-Shot) |85.42|
|MMLU (5-Shot) |63.34|
|TruthfulQA (0-shot) |63.28|
|Winogrande (5-shot) |81.37|
|GSM8k (5-shot) |55.12|