metadata
base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@5
- cosine_precision@10
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_mrr@5
- cosine_mrr@10
- cosine_map@5
- cosine_map@10
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CoSENTLoss
- dataset_size:7232
- loss:WeightedMultipleNegativesRankingLoss
widget:
- source_sentence: >-
, antenna, or other sensor to attain mission performance levels that
currently cannot be achieved by a monolithic satellite. Most aspects of
this concept have been widely studied, but
the first implementation has yet to be realized, with the exception of a
few initial experiments.
A distributed satellite system taxonomy is shown in Fig. 1 with a
discussion of current and planned systems to
follow. At the end of this section, a candidate distributed space mission
is presented as a common reference for
Table 1 presents a selection of current distributed satellite systems,
grouped in the four typical mission
categories
sentences:
- >+
What is the precision that the system is aiming for in terms of tracking
error?
- >+
What is the main challenge in implementing a distributed satellite
system?
- >+
Who are the authors of the NASA document "Space Radiation Cancer Risk
Projections for Explorative Missions: Uncertainty Reduction and
Mitigation"?
- source_sentence: >-
:250,000 scale for regional context) . Near-term efforts should focus on
high-priority locations .
[16] Terrain hazard (e .g ., slope, surface roughness), line-of-sight (i
.e ., viewshed), and time-dependent
illumination maps at appropriate scales (e .g ., best-available supported
by the data) are high-priority derived products essential in mission
planning, and they should be made available as soon as possible .
[17] South polar data products could be initially controlled to coarser
data and known surface reference points to support early Artemis missions
and other surface activities, but establishment of a local control network
applied to all necessary data layers would facilitate interoperability and
provide more precision for specific sites .
Higher-order data products are tied to controlled foundational data and
are derived from source data, such as measurements of elemental abundance,
temperature or reflectance at multiple wavelengths, observations of solar
illumination, and output from space weather models . Higher-order data
products derived from these source data will play an essential role in
planning and executing south polar missions . Planning the science
activities to be carried out on the lunar surface will be based on these
higher-order data products, and, in turn, the science returned by those
activities will be used to update those same products . For example,
geologic maps based on remotely sensed data prior to early Artemis
landings will be a likely outcome of site assessments and will form the
critical basis for traverse plans and planning of science tasks . The
observations, samples, and measurements made during Artemis surface
activities will feed back into updating the geologic maps, to the benefit
of future crewed or robotic missions to the same area . Similarly,
resource maps will drive the selection of landing sites for missions
focused on resource discovery, characterization, and utilization, and the
findings of those missions will be used to iteratively update the resource
maps . In these cases, and others
sentences:
- >+
What are the specifications of the Theia imager that make it suitable
for quantitative remote sensing studies?
- |+
Who supported the first study?
- >+
What are the essential derived products in mission planning, and why are
they crucial for south polar missions?
- source_sentence: >-
, there are still
some challenges to be overcome it is shown that it is possible to perform
such links. Furthermore,
recommendations for future operations of optical links were provided.
FLP is also integrated in the educational aspects of the Institute. Many
future aerospace engineers were
trained for satellite operations and Earth Observations and the satellite
will be used to train operators
Further investigation of the Attitude Control is required for the
stabilization of the optical links on
other G/S as Oberpfaffenhofen. However, future projects might benefit from
more standardization on
the side of G/S Feedback for optical links. Overall Flying Laptop is a
stable platform for technology demonstration, Earth Observation, and ed-
588. [Online]. Available
sentences:
- >+
What are the remaining challenges that need to be addressed for the
successful implementation of optical links?
- >+
What are the benefits of enhancing the radiometric resolution of VLEO
satellite systems?
- >+
What is the reason for using the uncoupled approach for the radiation
calculations in this study?
- source_sentence: >-
: they are visible on the waterfall plots with a very high amplitude.
Moreover, some peaks appear on waterfall plots while they are not
visible on zero speed curves. These peaks correspond to first order
unbalance, engine orders or wheel eigenmodes. By repeating the tests with
different configurations (without ventilation, changing the axes, etc...),
conclusions have been made and are presented in table 4.
It is necessary to check if the modes presented in table 4 do not cross
the order 1 unbalance or the rocking mode. The visible lines starting from
the origin and evolving with the rotation speed of the wheel are the
engine orders due to the imperfections of the wheel. When they cross modes
of the wheel, the amplitudes corresponding to the crossing are much higher
as we can clearly see in Table 2, on the x axis waterfall plots at 1050 Hz
and 4000 RPM. The waterfall plots allow to have a global view on the wheel
structure. By looking at these curves, two wheels can be compared. For
example, higher amplitudes on engine orders mean that the wheel has
defects. Moreover, a shift of the rocking mode means that the parameters
of the wheel are different as shown in equations 4.
Table 3 summarizes the static and dynamic unbalances calculated on three
wheels. We notice that they all have the same order of magnitude.
Environmental vibration and shock tests can vary this value by damaging
the wheel. On the other hand, bearing defects can be reduced when the
wheel is continuously rotated due to the running-in process, which can
decrease the unbalance value. In general, environmental testing has more
impact than running-in.
When the frequencies are low, the wheel has no trouble following the
setpoint. At high frequencies, the wheel follows the setpoint but with a
loss of amplitude and a phase shift
sentences:
- >+
What are the peaks that appear on waterfall plots but not on zero speed
curves?
- >+
Why is separately scheduling the imaging and download tasks a natural
choice for real-world complex systems?
- |+
What are the dominant orbit determination uncertainties?
- source_sentence: >-
: Block diagram of the 7-band CCD-in-CMOS TDI sensor. Each TX slice has
two serializers and its own PLL.
The CCD bands operate continuously and time interleaved. The output stages
for the CCD arrays are implemented both at the top and bottom of each band
to support the bi-directional operation. All 14 output stages in one
column are connected to one delta-sigma column-level ADC with digital CDS
implemented in the digital decimator. The outputs of every 128 ADCs are
serialized to one of 32 LVDS outputs. Two clock signals are also provided
via LVDS to synchronize the channels. These outputs are capable of running
at an aggregate data rate of >50Gb/s using on-chip PLLs.
The sensor has been processed for Back-Side Illumination and it has been
packaged in a custom ceramic PGA package. Figure 15 shows a picture of the
sensor with its 7 bands. The figure shows the front-side and back-side
versions of the chip side by side.
(a) (b) Figure 15: 7-band CCD-in-CMOS TDI chip photograph. FSI shown only
for reference (a) and BSI version (b).
As a proof-of-concept, an RGB butcher-brick filter has been used as glass
lid for the sensor, to enable multicolor TDI, although filters may be
processed directly on the wafer as well [9]. The sensor,
camera system and a color image captured from the setup are depicted in
Figure 16, providing evidence that multispectral TDI is viable with the
sensor.
Figure 16: Colour TDI image captured from the sensor, sensor with RGB
color filter and camera set-up.
Table 3 below shows a comparison of different TDI sensors, including the
first iteration of our sensor.
Integrated drivers
The measurements on the first iteration of the SoC verified
sentences:
- |+
What is the primary objective of the Zodiac Pioneer Mission?
- |+
What is the main topic of the papers listed in the context?
- >+
What is the aggregate data rate of the outputs of the 7-band CCD-in-CMOS
TDI sensor?
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@5
value: 0.8407960199004975
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8843283582089553
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.16815920398009948
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08843283582089552
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.8407960199004975
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8843283582089553
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.749593576396566
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7638900783774348
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.7189676616915421
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.7249965450525153
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.7189676616915422
name: Cosine Map@5
- type: cosine_map@10
value: 0.7249965450525152
name: Cosine Map@10
- type: cosine_accuracy@5
value: 0.9198717948717948
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9551282051282052
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.18397435897435896
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0955128205128205
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.9198717948717948
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9551282051282052
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.786039298615645
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7975208279742617
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.740758547008547
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.7455369861619862
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.740758547008547
name: Cosine Map@5
- type: cosine_map@10
value: 0.7455369861619863
name: Cosine Map@10
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@5
value: 0.8345771144278606
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8781094527363185
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.16691542288557212
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08781094527363183
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.8345771144278606
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8781094527363185
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.7384076037005772
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7524024562602603
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.7060530679933663
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.7117739674642659
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.7060530679933666
name: Cosine Map@5
- type: cosine_map@10
value: 0.7117739674642659
name: Cosine Map@10
- type: cosine_accuracy@5
value: 0.907051282051282
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9519230769230769
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.1814102564102564
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09519230769230767
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.907051282051282
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9519230769230769
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.7793612708940784
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7942949173487753
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.7363247863247866
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.7427375864875867
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.7363247863247864
name: Cosine Map@5
- type: cosine_map@10
value: 0.7427375864875865
name: Cosine Map@10
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@5
value: 0.8146766169154229
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8631840796019901
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.16293532338308458
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08631840796019902
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.8146766169154229
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8631840796019901
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.7159371426767726
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.731814701526023
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.6826907131011605
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.6893587617468213
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.6826907131011608
name: Cosine Map@5
- type: cosine_map@10
value: 0.6893587617468214
name: Cosine Map@10
- type: cosine_accuracy@5
value: 0.8846153846153846
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9455128205128205
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.1769230769230769
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09455128205128205
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.8846153846153846
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9455128205128205
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.7547512036424451
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7747939646301274
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.7107905982905985
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.7192778286528287
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.7107905982905982
name: Cosine Map@5
- type: cosine_map@10
value: 0.7192778286528286
name: Cosine Map@10
SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("federicovolponi/Snowflake-snowflake-arctic-embed-m-space-sup")
sentences = [
': Block diagram of the 7-band CCD-in-CMOS TDI sensor. Each TX slice has two serializers and its own PLL.\nThe CCD bands operate continuously and time interleaved. The output stages for the CCD arrays are implemented both at the top and bottom of each band to support the bi-directional operation. All 14 output stages in one column are connected to one delta-sigma column-level ADC with digital CDS implemented in the digital decimator. The outputs of every 128 ADCs are serialized to one of 32 LVDS outputs. Two clock signals are also provided via LVDS to synchronize the channels. These outputs are capable of running at an aggregate data rate of >50Gb/s using on-chip PLLs.\nThe sensor has been processed for Back-Side Illumination and it has been packaged in a custom ceramic PGA package. Figure 15 shows a picture of the sensor with its 7 bands. The figure shows the front-side and back-side versions of the chip side by side.\n(a) (b) Figure 15: 7-band CCD-in-CMOS TDI chip photograph. FSI shown only for reference (a) and BSI version (b).\nAs a proof-of-concept, an RGB butcher-brick filter has been used as glass lid for the sensor, to enable multicolor TDI, although filters may be processed directly on the wafer as well [9]. The sensor,\ncamera system and a color image captured from the setup are depicted in Figure 16, providing evidence that multispectral TDI is viable with the sensor.\nFigure 16: Colour TDI image captured from the sensor, sensor with RGB color filter and camera set-up.\nTable 3 below shows a comparison of different TDI sensors, including the first iteration of our sensor.\nIntegrated drivers\nThe measurements on the first iteration of the SoC verified',
'What is the aggregate data rate of the outputs of the 7-band CCD-in-CMOS TDI sensor?\n\n',
'What is the primary objective of the Zodiac Pioneer Mission?\n\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.8408 |
cosine_accuracy@10 |
0.8843 |
cosine_precision@5 |
0.1682 |
cosine_precision@10 |
0.0884 |
cosine_recall@5 |
0.8408 |
cosine_recall@10 |
0.8843 |
cosine_ndcg@5 |
0.7496 |
cosine_ndcg@10 |
0.7639 |
cosine_mrr@5 |
0.719 |
cosine_mrr@10 |
0.725 |
cosine_map@5 |
0.719 |
cosine_map@10 |
0.725 |
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.8346 |
cosine_accuracy@10 |
0.8781 |
cosine_precision@5 |
0.1669 |
cosine_precision@10 |
0.0878 |
cosine_recall@5 |
0.8346 |
cosine_recall@10 |
0.8781 |
cosine_ndcg@5 |
0.7384 |
cosine_ndcg@10 |
0.7524 |
cosine_mrr@5 |
0.7061 |
cosine_mrr@10 |
0.7118 |
cosine_map@5 |
0.7061 |
cosine_map@10 |
0.7118 |
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.8147 |
cosine_accuracy@10 |
0.8632 |
cosine_precision@5 |
0.1629 |
cosine_precision@10 |
0.0863 |
cosine_recall@5 |
0.8147 |
cosine_recall@10 |
0.8632 |
cosine_ndcg@5 |
0.7159 |
cosine_ndcg@10 |
0.7318 |
cosine_mrr@5 |
0.6827 |
cosine_mrr@10 |
0.6894 |
cosine_map@5 |
0.6827 |
cosine_map@10 |
0.6894 |
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.9199 |
cosine_accuracy@10 |
0.9551 |
cosine_precision@5 |
0.184 |
cosine_precision@10 |
0.0955 |
cosine_recall@5 |
0.9199 |
cosine_recall@10 |
0.9551 |
cosine_ndcg@5 |
0.786 |
cosine_ndcg@10 |
0.7975 |
cosine_mrr@5 |
0.7408 |
cosine_mrr@10 |
0.7455 |
cosine_map@5 |
0.7408 |
cosine_map@10 |
0.7455 |
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.9071 |
cosine_accuracy@10 |
0.9519 |
cosine_precision@5 |
0.1814 |
cosine_precision@10 |
0.0952 |
cosine_recall@5 |
0.9071 |
cosine_recall@10 |
0.9519 |
cosine_ndcg@5 |
0.7794 |
cosine_ndcg@10 |
0.7943 |
cosine_mrr@5 |
0.7363 |
cosine_mrr@10 |
0.7427 |
cosine_map@5 |
0.7363 |
cosine_map@10 |
0.7427 |
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.8846 |
cosine_accuracy@10 |
0.9455 |
cosine_precision@5 |
0.1769 |
cosine_precision@10 |
0.0946 |
cosine_recall@5 |
0.8846 |
cosine_recall@10 |
0.9455 |
cosine_ndcg@5 |
0.7548 |
cosine_ndcg@10 |
0.7748 |
cosine_mrr@5 |
0.7108 |
cosine_mrr@10 |
0.7193 |
cosine_map@5 |
0.7108 |
cosine_map@10 |
0.7193 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
learning_rate
: 3e-06
weight_decay
: 0.001
num_train_epochs
: 20
bf16
: True
tf32
: False
load_best_model_at_end
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 3e-06
weight_decay
: 0.001
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 20
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.0
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
dim_256_cosine_map@10 |
dim_512_cosine_map@10 |
dim_768_cosine_map@10 |
0.4425 |
100 |
0.5883 |
- |
- |
- |
- |
0.8850 |
200 |
0.2765 |
- |
- |
- |
- |
1.3274 |
300 |
0.2047 |
- |
- |
- |
- |
1.7699 |
400 |
0.1628 |
- |
- |
- |
- |
2.2124 |
500 |
0.1519 |
0.1204 |
0.7094 |
0.7271 |
0.7266 |
2.6549 |
600 |
0.1309 |
- |
- |
- |
- |
3.0973 |
700 |
0.1228 |
- |
- |
- |
- |
3.5398 |
800 |
0.1062 |
- |
- |
- |
- |
3.9823 |
900 |
0.097 |
- |
- |
- |
- |
4.4248 |
1000 |
0.0853 |
0.1026 |
0.7281 |
0.7409 |
0.7468 |
4.8673 |
1100 |
0.086 |
- |
- |
- |
- |
5.3097 |
1200 |
0.0723 |
- |
- |
- |
- |
5.7522 |
1300 |
0.0678 |
- |
- |
- |
- |
6.1947 |
1400 |
0.0655 |
- |
- |
- |
- |
6.6372 |
1500 |
0.0583 |
0.0970 |
0.7252 |
0.7479 |
0.7502 |
7.0796 |
1600 |
0.0586 |
- |
- |
- |
- |
7.5221 |
1700 |
0.0521 |
- |
- |
- |
- |
7.9646 |
1800 |
0.049 |
- |
- |
- |
- |
8.4071 |
1900 |
0.0437 |
- |
- |
- |
- |
8.8496 |
2000 |
0.0443 |
0.0974 |
0.7193 |
0.7427 |
0.7455 |
Framework Versions
- Python: 3.12.0
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu118
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
WeightedMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}