results / README.md
fernandals's picture
Update README.md
0d768b0 verified
|
raw
history blame
3.38 kB
metadata
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: NousResearch/Llama-2-13b-hf
model-index:
  - name: results
    results: []
datasets:
  - celsowm/cnn_news_ptbr
language:
  - pt
pipeline_tag: text2text-generation

results

This model is a fine-tuned version of NousResearch/Llama-2-13b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7605

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.6794 0.1 25 1.6358
1.6218 0.21 50 1.5895
1.6211 0.31 75 1.5559
1.5658 0.41 100 1.5291
1.5722 0.52 125 1.5006
1.5555 0.62 150 1.4762
1.5135 0.72 175 1.4504
1.5607 0.82 200 1.4317
1.5449 0.93 225 1.4058
1.4032 1.03 250 1.3746
1.3898 1.13 275 1.3365
1.3305 1.24 300 1.3098
1.3502 1.34 325 1.2836
1.3796 1.44 350 1.2635
1.3519 1.55 375 1.2330
1.3051 1.65 400 1.2084
1.3192 1.75 425 1.1841
1.3232 1.86 450 1.1621
1.3408 1.96 475 1.1412
1.1116 2.06 500 1.0925
1.107 2.16 525 1.0628
1.0926 2.27 550 1.0387
1.0772 2.37 575 1.0121
1.0742 2.47 600 0.9918
1.109 2.58 625 0.9706
1.0826 2.68 650 0.9479
1.0857 2.78 675 0.9281
1.0705 2.89 700 0.9112
1.0742 2.99 725 0.8928
0.8945 3.09 750 0.8542
0.861 3.2 775 0.8344
0.8869 3.3 800 0.8198
0.8357 3.4 825 0.8039
0.8726 3.51 850 0.7924
0.8857 3.61 875 0.7809
0.8437 3.71 900 0.7702
0.8384 3.81 925 0.7637
0.819 3.92 950 0.7605

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1