|
--- |
|
license: apache-2.0 |
|
language: ti |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
widget: |
|
- text: "ግራፋይት ኣብ መላእ ዓለም ዳርጋ ብምዕሩይ ዝርጋሐ’ዩ ዝርከብ" |
|
--- |
|
|
|
# TiELECTRA BiEncoder Model |
|
|
|
This model is a [sentence-transformers](https://www.SBERT.net) model for the Tigrinya language based on [TiELECTRA-small](https://huggingface.co/fgaim/tielectra-small). |
|
The maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
## Using Sentence-Transformers |
|
|
|
Using this model becomes easy when you have sentence-transformersinstalled: |
|
|
|
```shell |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then use the model as follows: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["ሓደ ሰብኣይ ፈረስ ይጋልብ ኣሎ።", "ሓንቲ ጓል ክራር ትጻወት ኣላ።"] |
|
|
|
model = SentenceTransformer('fgaim/tielectra-bi-encoder') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Using 🤗 Transformers |
|
|
|
Use the transformers library as follows: |
|
Pass the input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
|
|
# Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] # First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ["ሓደ ሰብኣይ ፈረስ ይጋልብ ኣሎ።", "ሓንቲ ጓል ክራር ትጻወት ኣላ።"] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained("fgaim/tielectra-bi-encoder") |
|
model = AutoModel.from_pretrained("fgaim/tielectra-bi-encoder") |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt") |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"]) |
|
|
|
print("Sentence embeddings:", sentence_embeddings) |
|
``` |
|
|
|
## Architecture |
|
|
|
### Base Model |
|
|
|
The model properties: |
|
| Model Size | Layers | Attn. Heads | Hidden Size | FFN | Parameters | Max. Seq | |
|
|------------|----|----|-----|------|------|------| |
|
| SMALL | 12 | 4 | 256 | 1024 | 14M | 512 | |
|
|
|
### BiEncoder Model |
|
|
|
- Max Seq Length: `512` |
|
- Word embedding dimension: `256` |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ElectraModel |
|
|
|
(1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Cite |
|
|
|
If you use this model in your product or research, you can cite it as follows: |
|
|
|
```bibtex |
|
@article{Fitsum2021TiPLMs, |
|
author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, |
|
title={Monolingual Pre-trained Language Models for Tigrinya}, |
|
year=2021, |
|
publisher={WiNLP 2021 co-located EMNLP 2021} |
|
} |
|
``` |
|
|