|
--- |
|
language: ti |
|
widget: |
|
- text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" |
|
datasets: |
|
- TLMD |
|
- NTC |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: tiroberta-base-pos |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
metrics: |
|
- name: F1 |
|
type: f1 |
|
value: 0.9562 |
|
- name: Precision |
|
type: precision |
|
value: 0.9562 |
|
- name: Recall |
|
type: recall |
|
value: 0.9562 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9562 |
|
--- |
|
|
|
|
|
# Tigrinya POS tagging with TiRoBERTa |
|
|
|
This model is a fine-tuned version of [TiRoBERTa](https://huggingface.co/fgaim/tiroberta) on the NTC-v1 dataset (Tedla et al. 2016). |
|
|
|
## Training |
|
|
|
### Hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Results |
|
|
|
The model achieves the following results on the test set: |
|
- Loss: 0.3194 |
|
- Adj Precision: 0.9219 |
|
- Adj Recall: 0.9335 |
|
- Adj F1: 0.9277 |
|
- Adj Number: 1670 |
|
- Adv Precision: 0.8297 |
|
- Adv Recall: 0.8554 |
|
- Adv F1: 0.8423 |
|
- Adv Number: 484 |
|
- Con Precision: 0.9844 |
|
- Con Recall: 0.9763 |
|
- Con F1: 0.9804 |
|
- Con Number: 972 |
|
- Fw Precision: 0.7895 |
|
- Fw Recall: 0.5357 |
|
- Fw F1: 0.6383 |
|
- Fw Number: 28 |
|
- Int Precision: 0.6552 |
|
- Int Recall: 0.7308 |
|
- Int F1: 0.6909 |
|
- Int Number: 26 |
|
- N Precision: 0.9650 |
|
- N Recall: 0.9662 |
|
- N F1: 0.9656 |
|
- N Number: 3992 |
|
- Num Precision: 0.9747 |
|
- Num Recall: 0.9665 |
|
- Num F1: 0.9706 |
|
- Num Number: 239 |
|
- N Prp Precision: 0.9308 |
|
- N Prp Recall: 0.9447 |
|
- N Prp F1: 0.9377 |
|
- N Prp Number: 470 |
|
- N V Precision: 0.9854 |
|
- N V Recall: 0.9736 |
|
- N V F1: 0.9794 |
|
- N V Number: 416 |
|
- Pre Precision: 0.9722 |
|
- Pre Recall: 0.9625 |
|
- Pre F1: 0.9673 |
|
- Pre Number: 907 |
|
- Pro Precision: 0.9448 |
|
- Pro Recall: 0.9236 |
|
- Pro F1: 0.9341 |
|
- Pro Number: 445 |
|
- Pun Precision: 1.0 |
|
- Pun Recall: 0.9994 |
|
- Pun F1: 0.9997 |
|
- Pun Number: 1607 |
|
- Unc Precision: 1.0 |
|
- Unc Recall: 0.875 |
|
- Unc F1: 0.9333 |
|
- Unc Number: 16 |
|
- V Precision: 0.8780 |
|
- V Recall: 0.9231 |
|
- V F1: 0.9 |
|
- V Number: 78 |
|
- V Aux Precision: 0.9685 |
|
- V Aux Recall: 0.9878 |
|
- V Aux F1: 0.9780 |
|
- V Aux Number: 654 |
|
- V Ger Precision: 0.9388 |
|
- V Ger Recall: 0.9571 |
|
- V Ger F1: 0.9479 |
|
- V Ger Number: 513 |
|
- V Imf Precision: 0.9634 |
|
- V Imf Recall: 0.9497 |
|
- V Imf F1: 0.9565 |
|
- V Imf Number: 914 |
|
- V Imv Precision: 0.8793 |
|
- V Imv Recall: 0.7286 |
|
- V Imv F1: 0.7969 |
|
- V Imv Number: 70 |
|
- V Prf Precision: 0.8960 |
|
- V Prf Recall: 0.9082 |
|
- V Prf F1: 0.9020 |
|
- V Prf Number: 294 |
|
- V Rel Precision: 0.9678 |
|
- V Rel Recall: 0.9538 |
|
- V Rel F1: 0.9607 |
|
- V Rel Number: 757 |
|
- Overall Precision: 0.9562 |
|
- Overall Recall: 0.9562 |
|
- Overall F1: 0.9562 |
|
- Overall Accuracy: 0.9562 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.0.dev0 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 1.13.3 |
|
- Tokenizers 0.10.3 |
|
|
|
|
|
## Citation |
|
|
|
If you use this model in your product or research, please cite as follows: |
|
|
|
``` |
|
@article{Fitsum2021TiPLMs, |
|
author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, |
|
title={Monolingual Pre-trained Language Models for Tigrinya}, |
|
year=2021, |
|
publisher={WiNLP 2021/EMNLP 2021} |
|
} |
|
``` |
|
|
|
|
|
## References |
|
|
|
``` |
|
Tedla, Y., Yamamoto, K. & Marasinghe, A. 2016. |
|
Tigrinya Part-of-Speech Tagging with Morphological Patterns and the New Nagaoka Tigrinya Corpus. |
|
International Journal Of Computer Applications 146 pp. 33-41 (2016). |
|
``` |
|
|