metaextractor / README.md
tieandrews's picture
Change example order
994b162
|
raw
history blame
6.05 kB
---
tags:
- Beta
license: "mit"
thumbnail: "https://huggingface.co/finding-fossils/metaextractor/resolve/main/ffossils-logo-text.png"
widget:
- text: "The core sample was aged at 12300 - 13500 BP and found at 210m a.s.l."
example_title: "Age/Alti"
- text: "In Northern Canada, the BGC site core was primarily made up of Pinus pollen."
example_title: "Taxa/Site/Region"
---
<img src="https://huggingface.co/finding-fossils/metaextractor/resolve/main/ffossils-logo-text.png" width="400">
# MetaExtractor
<!-- Provide a quick summary of what the model is/does. -->
This model extracts metadata from research articles related to Paleoecology.
The entities detected by this model are:
- **AGE**: when historical ages are mentioned such as 1234 AD or 4567 BP (before present)
- **TAXA**: plant or animal taxa names indicating what samples contained
- **GEOG**: geographic coordinates indicating where samples were excavated from, e.g. 12'34"N 34'23"W
- **SITE**: site names for where samples were excavated from
- **REGION**: more general regions to provide context for where sites are located
- **EMAIL**: researcher emails in the articles able to be used for follow-up contact
- **ALTI**: altitudes of sites from where samples were excavated, e.g. 123 m a.s.l (above sea level)
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Ty Andrews, Jenit Jain, Shaun Hutchinson, Kelly Wu, and Simon Goring
- **Shared by:** Neotoma Paleocology Database
- **Model type:** Token Classification
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** roberta-base
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/NeotomaDB/MetaExtractor
- **Paper:** TBD
- **Demo:** TBD
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]