|
# Sentiment Analysis in English |
|
## bertweet-sentiment-analysis |
|
|
|
Repository: [https://github.com/finiteautomata/pysentimiento/](https://github.com/finiteautomata/pysentimiento/) |
|
|
|
|
|
Model trained with SemEval 2017 corpus (around ~40k tweets). Base model is [BerTweet](https://github.com/VinAIResearch/BERTweet), a RoBERTa model trained on English tweets. |
|
|
|
Uses `POS`, `NEG`, `NEU` labels. |
|
|
|
## License |
|
|
|
`pysentimiento` is an open-source library for non-commercial use and scientific research purposes only. Please be aware that models are trained with third-party datasets and are subject to their respective licenses. |
|
|
|
1. [TASS Dataset license](http://tass.sepln.org/tass_data/download.php) |
|
2. [SEMEval 2017 Dataset license]() |
|
|
|
## Citation |
|
|
|
If you use `pysentimiento` in your work, please cite [this paper](https://arxiv.org/abs/2106.09462) |
|
|
|
``` |
|
@misc{perez2021pysentimiento, |
|
title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks}, |
|
author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque}, |
|
year={2021}, |
|
eprint={2106.09462}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
Enjoy! 🤗 |
|
|