indo-dpr-question_encoder-multiset-base
Indonesian Dense Passage Retrieval trained on translated SQuADv2.0 and Natural Question dataset in DPR format.
Evaluation
Class | Precision | Recall | F1-Score | Support |
---|---|---|---|---|
hard_negative | 0.9961 | 0.9961 | 0.9961 | 384778 |
positive | 0.8783 | 0.8783 | 0.8783 | 12414 |
Metric | Value |
---|---|
Loss | 0.0220 |
Accuracy | 0.9924 |
Macro Average | 0.9372 |
Weighted Average | 0.9924 |
Accuracy and F1 | 0.9353 |
Average Rank | 0.2194 |
Note: This report is for evaluation on the dev set, after 27288 batches.
Usage
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
tokenizer = DPRContextEncoderTokenizer.from_pretrained('firqaaa/indo-dpr-ctx_encoder-multiset-base')
model = DPRContextEncoder.from_pretrained('firqaaa/indo-dpr-ctx_encoder-multiset-base')
input_ids = tokenizer("Siapa nama tokoh utama dalam serial SLAMDunk?", return_tensors='pt')["input_ids"]
embeddings = model(input_ids).pooler_output
You can use it using haystack
as follows:
from haystack.nodes import DensePassageRetriever
from haystack.document_stores import InMemoryDocumentStore
retriever = DensePassageRetriever(document_store=InMemoryDocumentStore(),
query_embedding_model="firqaaa/indo-dpr-ctx_encoder-multiset-base",
passage_embedding_model="firqaaa/indo-dpr-ctx_encoder-multiset-base",
max_seq_len_query=64,
max_seq_len_passage=256,
batch_size=16,
use_gpu=True,
embed_title=True,
use_fast_tokenizers=True)
- Downloads last month
- 35
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.