SetFit Aspect Model with firqaaa/indo-sentence-bert-base
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses firqaaa/indo-sentence-bert-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: firqaaa/indo-sentence-bert-base
- Classification head: a LogisticRegression instance
- spaCy Model: id_core_news_trf
- SetFitABSA Aspect Model: firqaaa/indo-setfit-absa-bert-base-restaurants-aspect
- SetFitABSA Polarity Model: firqaaa/indo-setfit-absa-bert-base-restaurants-polarity
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9087 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"firqaaa/setfit-indo-absa-restaurants-aspect",
"firqaaa/setfit-indo-absa-restaurants-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 19.7819 | 59 |
Label | Training Sample Count |
---|---|
no aspect | 2939 |
aspect | 1468 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.3135 | - |
0.0001 | 50 | 0.3401 | - |
0.0001 | 100 | 0.3212 | - |
0.0002 | 150 | 0.3641 | - |
0.0003 | 200 | 0.3317 | - |
0.0004 | 250 | 0.2809 | - |
0.0004 | 300 | 0.2446 | - |
0.0005 | 350 | 0.284 | - |
0.0006 | 400 | 0.3257 | - |
0.0007 | 450 | 0.2996 | - |
0.0007 | 500 | 0.209 | 0.295 |
0.0008 | 550 | 0.2121 | - |
0.0009 | 600 | 0.2204 | - |
0.0010 | 650 | 0.3023 | - |
0.0010 | 700 | 0.3253 | - |
0.0011 | 750 | 0.233 | - |
0.0012 | 800 | 0.3131 | - |
0.0013 | 850 | 0.2873 | - |
0.0013 | 900 | 0.2028 | - |
0.0014 | 950 | 0.2608 | - |
0.0015 | 1000 | 0.2842 | 0.2696 |
0.0016 | 1050 | 0.2297 | - |
0.0016 | 1100 | 0.266 | - |
0.0017 | 1150 | 0.2771 | - |
0.0018 | 1200 | 0.2347 | - |
0.0019 | 1250 | 0.2539 | - |
0.0019 | 1300 | 0.3409 | - |
0.0020 | 1350 | 0.2925 | - |
0.0021 | 1400 | 0.2608 | - |
0.0021 | 1450 | 0.2792 | - |
0.0022 | 1500 | 0.261 | 0.2636 |
0.0023 | 1550 | 0.2596 | - |
0.0024 | 1600 | 0.2563 | - |
0.0024 | 1650 | 0.2329 | - |
0.0025 | 1700 | 0.2954 | - |
0.0026 | 1750 | 0.3329 | - |
0.0027 | 1800 | 0.2138 | - |
0.0027 | 1850 | 0.2591 | - |
0.0028 | 1900 | 0.268 | - |
0.0029 | 1950 | 0.2144 | - |
0.0030 | 2000 | 0.2361 | 0.2586 |
0.0030 | 2050 | 0.2322 | - |
0.0031 | 2100 | 0.2646 | - |
0.0032 | 2150 | 0.2018 | - |
0.0033 | 2200 | 0.2579 | - |
0.0033 | 2250 | 0.2501 | - |
0.0034 | 2300 | 0.2657 | - |
0.0035 | 2350 | 0.2272 | - |
0.0036 | 2400 | 0.2383 | - |
0.0036 | 2450 | 0.2615 | - |
0.0037 | 2500 | 0.2818 | 0.2554 |
0.0038 | 2550 | 0.2616 | - |
0.0039 | 2600 | 0.2225 | - |
0.0039 | 2650 | 0.2749 | - |
0.0040 | 2700 | 0.2572 | - |
0.0041 | 2750 | 0.2729 | - |
0.0041 | 2800 | 0.2559 | - |
0.0042 | 2850 | 0.2363 | - |
0.0043 | 2900 | 0.2518 | - |
0.0044 | 2950 | 0.1948 | - |
0.0044 | 3000 | 0.2842 | 0.2538 |
0.0045 | 3050 | 0.2243 | - |
0.0046 | 3100 | 0.2186 | - |
0.0047 | 3150 | 0.2829 | - |
0.0047 | 3200 | 0.2101 | - |
0.0048 | 3250 | 0.2156 | - |
0.0049 | 3300 | 0.2539 | - |
0.0050 | 3350 | 0.3005 | - |
0.0050 | 3400 | 0.2699 | - |
0.0051 | 3450 | 0.2431 | - |
0.0052 | 3500 | 0.2931 | 0.2515 |
0.0053 | 3550 | 0.2032 | - |
0.0053 | 3600 | 0.2451 | - |
0.0054 | 3650 | 0.2419 | - |
0.0055 | 3700 | 0.2267 | - |
0.0056 | 3750 | 0.2945 | - |
0.0056 | 3800 | 0.2689 | - |
0.0057 | 3850 | 0.2596 | - |
0.0058 | 3900 | 0.2978 | - |
0.0059 | 3950 | 0.2876 | - |
0.0059 | 4000 | 0.2484 | 0.2482 |
0.0060 | 4050 | 0.2698 | - |
0.0061 | 4100 | 0.2155 | - |
0.0061 | 4150 | 0.2474 | - |
0.0062 | 4200 | 0.2683 | - |
0.0063 | 4250 | 0.2979 | - |
0.0064 | 4300 | 0.2866 | - |
0.0064 | 4350 | 0.2604 | - |
0.0065 | 4400 | 0.1989 | - |
0.0066 | 4450 | 0.2708 | - |
0.0067 | 4500 | 0.2705 | 0.2407 |
0.0067 | 4550 | 0.2144 | - |
0.0068 | 4600 | 0.2503 | - |
0.0069 | 4650 | 0.2193 | - |
0.0070 | 4700 | 0.1796 | - |
0.0070 | 4750 | 0.2384 | - |
0.0071 | 4800 | 0.1933 | - |
0.0072 | 4850 | 0.2248 | - |
0.0073 | 4900 | 0.22 | - |
0.0073 | 4950 | 0.2052 | - |
0.0074 | 5000 | 0.2314 | 0.224 |
0.0075 | 5050 | 0.2279 | - |
0.0076 | 5100 | 0.2198 | - |
0.0076 | 5150 | 0.2332 | - |
0.0077 | 5200 | 0.1666 | - |
0.0078 | 5250 | 0.1949 | - |
0.0079 | 5300 | 0.1802 | - |
0.0079 | 5350 | 0.2496 | - |
0.0080 | 5400 | 0.2399 | - |
0.0081 | 5450 | 0.2042 | - |
0.0082 | 5500 | 0.1859 | 0.2077 |
0.0082 | 5550 | 0.2216 | - |
0.0083 | 5600 | 0.1227 | - |
0.0084 | 5650 | 0.2351 | - |
0.0084 | 5700 | 0.2735 | - |
0.0085 | 5750 | 0.1008 | - |
0.0086 | 5800 | 0.1568 | - |
0.0087 | 5850 | 0.1211 | - |
0.0087 | 5900 | 0.0903 | - |
0.0088 | 5950 | 0.1473 | - |
0.0089 | 6000 | 0.1167 | 0.1877 |
0.0090 | 6050 | 0.206 | - |
0.0090 | 6100 | 0.2392 | - |
0.0091 | 6150 | 0.116 | - |
0.0092 | 6200 | 0.1493 | - |
0.0093 | 6250 | 0.1373 | - |
0.0093 | 6300 | 0.1163 | - |
0.0094 | 6350 | 0.0669 | - |
0.0095 | 6400 | 0.0756 | - |
0.0096 | 6450 | 0.0788 | - |
0.0096 | 6500 | 0.1816 | 0.1838 |
0.0097 | 6550 | 0.1288 | - |
0.0098 | 6600 | 0.0946 | - |
0.0099 | 6650 | 0.1374 | - |
0.0099 | 6700 | 0.2167 | - |
0.0100 | 6750 | 0.0759 | - |
0.0101 | 6800 | 0.1543 | - |
0.0102 | 6850 | 0.0573 | - |
0.0102 | 6900 | 0.1169 | - |
0.0103 | 6950 | 0.0294 | - |
0.0104 | 7000 | 0.1241 | 0.1769 |
0.0104 | 7050 | 0.0803 | - |
0.0105 | 7100 | 0.0139 | - |
0.0106 | 7150 | 0.01 | - |
0.0107 | 7200 | 0.0502 | - |
0.0107 | 7250 | 0.0647 | - |
0.0108 | 7300 | 0.0117 | - |
0.0109 | 7350 | 0.0894 | - |
0.0110 | 7400 | 0.0101 | - |
0.0110 | 7450 | 0.0066 | - |
0.0111 | 7500 | 0.0347 | 0.1899 |
0.0112 | 7550 | 0.0893 | - |
0.0113 | 7600 | 0.0127 | - |
0.0113 | 7650 | 0.1285 | - |
0.0114 | 7700 | 0.0049 | - |
0.0115 | 7750 | 0.0571 | - |
0.0116 | 7800 | 0.0068 | - |
0.0116 | 7850 | 0.0586 | - |
0.0117 | 7900 | 0.0788 | - |
0.0118 | 7950 | 0.0655 | - |
0.0119 | 8000 | 0.0052 | 0.1807 |
0.0119 | 8050 | 0.0849 | - |
0.0120 | 8100 | 0.0133 | - |
0.0121 | 8150 | 0.0445 | - |
0.0122 | 8200 | 0.0118 | - |
0.0122 | 8250 | 0.0118 | - |
0.0123 | 8300 | 0.063 | - |
0.0124 | 8350 | 0.0751 | - |
0.0124 | 8400 | 0.058 | - |
0.0125 | 8450 | 0.002 | - |
0.0126 | 8500 | 0.0058 | 0.1804 |
0.0127 | 8550 | 0.0675 | - |
0.0127 | 8600 | 0.0067 | - |
0.0128 | 8650 | 0.0087 | - |
0.0129 | 8700 | 0.0028 | - |
0.0130 | 8750 | 0.0626 | - |
0.0130 | 8800 | 0.0563 | - |
0.0131 | 8850 | 0.0012 | - |
0.0132 | 8900 | 0.0067 | - |
0.0133 | 8950 | 0.0011 | - |
0.0133 | 9000 | 0.0105 | 0.189 |
0.0134 | 9050 | 0.101 | - |
0.0135 | 9100 | 0.1162 | - |
0.0136 | 9150 | 0.0593 | - |
0.0136 | 9200 | 0.0004 | - |
0.0137 | 9250 | 0.0012 | - |
0.0138 | 9300 | 0.0022 | - |
0.0139 | 9350 | 0.0033 | - |
0.0139 | 9400 | 0.0025 | - |
0.0140 | 9450 | 0.0578 | - |
0.0141 | 9500 | 0.0012 | 0.1967 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- spaCy: 3.7.4
- Transformers: 4.36.2
- PyTorch: 2.1.2+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 30
Inference API (serverless) has been turned off for this model.