A model for solving the problem of missing words in search queries. The model uses the context of the query to generate possible words that could be missing.


## don't forget
# pip install protobuf sentencepiece

from transformers import pipeline
unmasker = pipeline("fill-mask", model="fkrasnov2/COLD2", device="cuda")
unmasker("электроника зарядка [MASK] USB")

[{'score': 0.3712620437145233,
  'token': 1131,
  'token_str': 'автомобильная',
  'sequence': 'электроника зарядка автомобильная usb'},
 {'score': 0.12239563465118408,
  'token': 7436,
  'token_str': 'быстрая',
  'sequence': 'электроника зарядка быстрая usb'},
 {'score': 0.046715956181287766,
  'token': 5819,
  'token_str': 'проводная',
  'sequence': 'электроника зарядка проводная usb'},
 {'score': 0.031308457255363464,
  'token': 635,
  'token_str': 'универсальная',
  'sequence': 'электроника зарядка универсальная usb'},
 {'score': 0.02941182069480419,
  'token': 2371,
  'token_str': 'адаптер',
  'sequence': 'электроника зарядка адаптер usb'}]

Coupled prepositions can be used to improve tokenization.

unmasker("одежда женское [MASK] для_праздника")

[{'score': 0.9355553984642029,
  'token': 503,
  'token_str': 'платье',
  'sequence': 'одежда женское платье для_праздника'},
 {'score': 0.011321154423058033,
  'token': 615,
  'token_str': 'кольцо',
  'sequence': 'одежда женское кольцо для_праздника'},
 {'score': 0.008672593161463737,
  'token': 993,
  'token_str': 'украшение',
  'sequence': 'одежда женское украшение для_праздника'},
 {'score': 0.0038903721142560244,
  'token': 27100,
  'token_str': 'пончо',
  'sequence': 'одежда женское пончо для_праздника'},
 {'score': 0.003703165566548705,
  'token': 453,
  'token_str': 'белье',
  'sequence': 'одежда женское белье для_праздника'}]

For transformers.js, it turned out that the ONNX version of the model was required.


from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("fkrasnov2/COLD2") 
model = ORTModelForMaskedLM.from_pretrained("fkrasnov2/COLD2", file_name='model.onnx') 

You can also run and use the model straight from your browser.

index.html
<!DOCTYPE html>
<html lang="ru">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Mask fill</title>
    <link rel="stylesheet" href="styles.css">
    <script src="main.js" type="module" defer></script>
</head>
<body>
    <div class="container">
        <textarea id="long-text-input" placeholder="Enter search query with [MASK]"></textarea>
        <button id="generate-button">
            Заполнить маску
        </button>
        <div id="output-div"></div>
    </div>
</body>
</html>
main.js
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/[email protected]';

const longTextInput = document.getElementById('long-text-input');
const output = document.getElementById('output-div');
const generateButton = document.getElementById('generate-button');

const pipe = await pipeline(
    'fill-mask', // task
    'fkrasnov2/COLD2' // model 
);

generateButton.addEventListener('click', async () => {

    const input = longTextInput.value;
    const result = await pipe(input);

    output.innerHTML = result[0].sequence;
    output.style.display = 'block';
});

Browser page

Downloads last month
10
Safetensors
Model size
9.89M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.