flaneur-ml's picture
End of training
9259bbb verified
|
raw
history blame
2.95 kB
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.86

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8175
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1414 1.0 113 2.0686 0.52
1.3917 2.0 226 1.4505 0.56
1.109 3.0 339 1.0342 0.71
0.6752 4.0 452 0.8531 0.74
0.5346 5.0 565 0.7352 0.74
0.3598 6.0 678 0.5552 0.82
0.32 7.0 791 0.5660 0.84
0.1663 8.0 904 0.5829 0.84
0.0369 9.0 1017 0.7868 0.83
0.0235 10.0 1130 0.8371 0.84
0.0087 11.0 1243 0.7114 0.84
0.0064 12.0 1356 0.7578 0.84
0.0046 13.0 1469 0.7859 0.83
0.0042 14.0 1582 0.8681 0.86
0.0032 15.0 1695 0.8926 0.86
0.0031 16.0 1808 0.8339 0.84
0.0029 17.0 1921 0.7772 0.86
0.0025 18.0 2034 0.8376 0.86
0.0025 19.0 2147 0.8175 0.86
0.0024 20.0 2260 0.8175 0.86

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1