|
--- |
|
license: apache-2.0 |
|
tags: |
|
- medical |
|
- vision |
|
--- |
|
# Model Card for MedSAM |
|
|
|
MedSAM is a fine-tuned version of [SAM](https://huggingface.co/docs/transformers/main/model_doc/sam) for the medical domain. |
|
|
|
## Model Description |
|
|
|
MedSAM was trained on a large-scale medical image segmentation dataset containing 1,090,486 medical image-mask pairs collected from different publicly available sources. |
|
The image-mask pairs cover 15 different imaging modalities and over 30 cancer types. |
|
|
|
MedSAM was initialized with the pre-trained SAM model with the ViT-Base backbone. The prompt encoder weights were frozen, while the image encoder and mask decoder weights were updated during training. |
|
The training was performed for 100 epochs with a batch size of 160 using the AdamW optimizer with a learning rate of 10−4 and a weight decay of 0.01. |
|
|
|
- **Repository:** [MedSAM Official GitHub Repository](https://github.com/bowang-lab/medsam) |
|
- **Paper:** [Segment Anything in Medical Images](https://arxiv.org/abs/2304.12306v1) |
|
|
|
## Usage |
|
|
|
```python |
|
import requests |
|
import torch |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
from transformers import SamModel, SamProcessor |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
model = SamModel.from_pretrained("flaviagiammarino/medsam-vit-base").to(device) |
|
processor = SamProcessor.from_pretrained("flaviagiammarino/medsam-vit-base") |
|
|
|
img_url = "https://raw.githubusercontent.com/bowang-lab/MedSAM/main/assets/img_demo.png" |
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") |
|
input_boxes = [95., 255., 190., 350.] |
|
|
|
inputs = processor(raw_image, input_boxes=[[input_boxes]], return_tensors="pt").to(device) |
|
outputs = model(**inputs, multimask_output=False) |
|
masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()) |
|
|
|
def show_mask(mask, ax, random_color): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([251/255, 252/255, 30/255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
ax.imshow(mask_image) |
|
|
|
def show_box(box, ax): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor="blue", facecolor=(0, 0, 0, 0), lw=2)) |
|
|
|
fig, ax = plt.subplots(1, 2, figsize=(10, 5)) |
|
ax[0].imshow(np.array(raw_image)) |
|
show_box(input_boxes, ax[0]) |
|
ax[0].set_title("Input Image and Bounding Box") |
|
ax[0].axis("off") |
|
ax[1].imshow(np.array(raw_image)) |
|
show_mask(masks[0], ax=ax[1], random_color=False) |
|
show_box(input_boxes, ax[1]) |
|
ax[1].set_title("MedSAM Segmentation") |
|
ax[1].axis("off") |
|
plt.show() |
|
``` |
|
![results](scripts/results.png) |
|
|
|
## Additional Information |
|
|
|
### Licensing Information |
|
The authors have released the model code and pre-trained checkpoints under the [Apache License 2.0](https://github.com/bowang-lab/MedSAM/blob/main/LICENSE). |
|
|
|
### Citation Information |
|
``` |
|
@article{ma2023segment, |
|
title={Segment anything in medical images}, |
|
author={Ma, Jun and Wang, Bo}, |
|
journal={arXiv preprint arXiv:2304.12306}, |
|
year={2023} |
|
} |
|
``` |