Whisper openai-whisper-large-v2

This model is a fine-tuned version of openai/whisper-large-v2 on the llamadas ecu911 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2832
  • Wer: 19.8947

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5257 1.0 422 0.3596 35.3561
0.2108 2.0 844 0.2888 27.7362
0.1153 3.0 1266 0.2694 25.3256
0.0674 4.0 1688 0.2810 32.9731
0.0435 5.0 2110 0.2817 20.3380
0.0301 6.0 2532 0.2910 23.0673
0.0245 7.0 2954 0.2817 20.5043
0.021 8.0 3376 0.2734 18.4400
0.0173 9.0 3798 0.2784 23.9263
0.0167 10.0 4220 0.2832 19.8947

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
15
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for flima/openai-whisper-large-v2-fullFT-es_ecu911_V2martin_win30s_samples

Finetuned
(191)
this model