floriandebaene's picture
End of training
c0e0ee4 verified
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: gysbert_historical_fmp2_ogtok_output_emotion_primary
    results: []

gysbert_historical_fmp2_ogtok_output_emotion_primary

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0069
  • Accuracy: 0.7123
  • F1: 0.5402
  • Precision: 0.6014
  • Recall: 0.5229

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.6286 0.3030 100 1.4354 0.5622 0.1200 0.0937 0.1667
1.2292 0.6061 200 1.0157 0.6065 0.2132 0.2454 0.2536
1.0055 0.9091 300 0.9542 0.6491 0.2868 0.4298 0.3134
0.9543 1.2121 400 0.9205 0.6610 0.3287 0.3193 0.3487
0.8554 1.5152 500 0.8846 0.6797 0.3406 0.3563 0.3626
0.8496 1.8182 600 0.8515 0.6780 0.3376 0.3400 0.3606
0.7995 2.1212 700 0.8363 0.6797 0.3599 0.3510 0.3806
0.7274 2.4242 800 0.8196 0.6814 0.3748 0.5206 0.3849
0.7402 2.7273 900 0.8130 0.6848 0.4108 0.4717 0.4126
0.7739 3.0303 1000 0.8050 0.6951 0.4295 0.4618 0.4362
0.6437 3.3333 1100 0.8085 0.6951 0.4475 0.5600 0.4309
0.653 3.6364 1200 0.8192 0.6917 0.4540 0.5471 0.4510
0.6566 3.9394 1300 0.8089 0.6917 0.4642 0.5545 0.4568
0.5754 4.2424 1400 0.8122 0.6968 0.4751 0.5435 0.4710
0.5799 4.5455 1500 0.8404 0.6882 0.4636 0.5242 0.4669
0.5898 4.8485 1600 0.8306 0.7104 0.5037 0.5878 0.4894
0.4972 5.1515 1700 0.8506 0.6985 0.4996 0.5380 0.4953
0.5047 5.4545 1800 0.8497 0.7002 0.4994 0.5374 0.4930
0.4803 5.7576 1900 0.8772 0.6968 0.4752 0.5421 0.4634
0.4932 6.0606 2000 0.8752 0.6899 0.4817 0.5110 0.4777
0.4104 6.3636 2100 0.8885 0.6985 0.4884 0.5257 0.4849
0.4255 6.6667 2200 0.9097 0.6882 0.4862 0.5055 0.4855
0.4752 6.9697 2300 0.9153 0.7019 0.4990 0.5266 0.4968
0.3682 7.2727 2400 0.9370 0.6865 0.4866 0.5051 0.4934
0.3738 7.5758 2500 0.9578 0.6882 0.4779 0.5069 0.4764
0.3342 7.8788 2600 0.9608 0.6917 0.5202 0.5305 0.5221
0.3324 8.1818 2700 0.9839 0.6797 0.5076 0.5069 0.5174
0.3247 8.4848 2800 0.9890 0.6814 0.4860 0.5048 0.4888
0.3101 8.7879 2900 1.0068 0.6814 0.4793 0.5039 0.4832
0.2835 9.0909 3000 1.0158 0.6882 0.5092 0.5262 0.5085
0.2792 9.3939 3100 1.0497 0.6831 0.4888 0.5233 0.4885
0.2426 9.6970 3200 1.0563 0.6882 0.5163 0.5227 0.5182
0.2636 10.0 3300 1.0859 0.6882 0.5219 0.5317 0.5278
0.2281 10.3030 3400 1.1076 0.6831 0.5040 0.5189 0.5073
0.238 10.6061 3500 1.1152 0.6865 0.4896 0.5059 0.4945
0.1861 10.9091 3600 1.1460 0.6848 0.4907 0.5062 0.4928

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.19.1