distilbert-base-uncased-lora-financial-sentiment-analysis

This model is a fine-tuned version of distilbert-base-uncased on the financial_phrasebank dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0777
  • Accuracy: {'accuracy': 0.9779735682819384}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3107 1.0 510 0.0777 {'accuracy': 0.9779735682819384}
0.117 2.0 1020 0.0853 {'accuracy': 0.9691629955947136}
0.0652 3.0 1530 0.0841 {'accuracy': 0.9779735682819384}

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.2
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for florspag/distilbert-base-uncased-lora-financial-sentiment-analysis

Adapter
(229)
this model

Dataset used to train florspag/distilbert-base-uncased-lora-financial-sentiment-analysis