from transformers import AutoModel, AutoTokenizer, StoppingCriteria
import torch
import argparse
class EosListStoppingCriteria(StoppingCriteria):
def __init__(self, eos_sequence = [137625, 137632, 2]):
self.eos_sequence = eos_sequence
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
last_ids = input_ids[:,-1].tolist()
return any(eos_id in last_ids for eos_id in self.eos_sequence)
def test_model(ckpt):
model = AutoModel.from_pretrained(ckpt, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(ckpt, trust_remote_code=True)
init_prompt = "<|im_start|>user\n{input_message}<|end_of_user|>\n<|im_start|>"
while True:
history = ""
print(f">>>让我们开始对话吧<<<")
input_message = input()
input_prompt = init_prompt.format(input_message = input_message)
history += input_prompt
input_ids = tokenizer.encode(history, return_tensors="pt")
output = model.generate(input_ids, top_p=1.0, max_new_tokens=300, stopping_criteria = [EosListStoppingCriteria()]).squeeze()
output_str = tokenizer.decode(output[input_ids.shape[1]: -1])
print(output_str)
print(">>>>>>>><<<<<<<<<<")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt", type=str, help="path to the checkpoint", required=True)
args = parser.parse_args()
test_model(args.ckpt)