news_summarization_model

This model is a fine-tuned version of eenzeenee/t5-base-korean-summarization on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2221
  • Rouge1: 0.6031
  • Rouge2: 0.4193
  • Rougel: 0.5896
  • Rougelsum: 0.5892
  • Gen Len: 42.2714

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.523 0.4762 100 0.3847 0.4833 0.2872 0.4627 0.4654 41.7571
0.3377 0.9524 200 0.2590 0.5709 0.3929 0.5581 0.5564 41.7810
0.2641 1.4286 300 0.2334 0.5889 0.4018 0.5785 0.5781 42.5048
0.2361 1.9048 400 0.2221 0.6031 0.4193 0.5896 0.5892 42.2714

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
51
Safetensors
Model size
276M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for fodmrldg/news_summarization_model

Finetuned
(3)
this model