YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Python T5 base model

Pre-trained model on CodeSearchNet Python dataset using a span-masking objective. The training objective and model were introduced in this paper and first released in this repository. PyT5 model used git-t5 framework built on top of JAX/Flax to pre-train the model on a TPU v3-8 node.

How to use

You can use this model to denoise span-masked sequences.

First, install the git-t5 pip package:

> pip install git-t5

Next, download the model and tokenizer:

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, 

model = AutoModelForSeq2SeqLM.from_pretrained("formermagic/pyt5-base")

tokenizer = AutoTokenizer.from_pretrained("formermagic/pyt5-base")

Finally, encode your input and generate the output sequence:

from git_t5.utils import encode_input

text = """
def alias(self, annotationtype, set, fallback=False):
    if inspect.isclass(annotationtype): annotationtype = annotationtype.ANNOTATIONTYPE
    if annotationtype in self.set_alias and set in self.set_alias[annotationtype]:
        return self.set_alias[annotationtype][set]
    elif fallback:
        return set
    else:
        raise KeyError("No alias for set " + set)
"""

batch, max_length = encode_input(tokenizer, text, seed=22)
outputs = model.generate(batch["input_ids"], max_length=max_length, num_beams=1)
print(tokenizer.batch_decode(outputs[..., 1:]))
print(tokenizer.batch_decode(batch["labels"]))

You should see the following output:

['<extra_id_0>, fallback=<extra_id_1> inspect<extra_id_2>.set_alias<extra_id_3> return self.set<extra_id_4>) def fallback']
['<extra_id_0>, fallback=<extra_id_1> inspect<extra_id_2>.set_alias<extra_id_3> return self.set<extra_id_4>) </s></s>']

As you can see, the predicted result is very close to the target sequence.

Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.