|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: gpt2 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: age_transcript_conv1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# age_transcript_conv1 |
|
|
|
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.2240 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: reduce_lr_on_plateau |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 4.7007 | 0.0254 | 1000 | 4.4922 | |
|
| 4.2819 | 0.0508 | 2000 | 4.2123 | |
|
| 4.1092 | 0.0762 | 3000 | 4.0324 | |
|
| 3.9861 | 0.1016 | 4000 | 3.9267 | |
|
| 3.9221 | 0.1270 | 5000 | 3.8582 | |
|
| 3.8904 | 0.1524 | 6000 | 3.7809 | |
|
| 3.7526 | 0.1778 | 7000 | 3.7252 | |
|
| 3.7724 | 0.2032 | 8000 | 3.6846 | |
|
| 3.6967 | 0.2285 | 9000 | 3.6293 | |
|
| 3.5701 | 0.2539 | 10000 | 3.5902 | |
|
| 3.676 | 0.2793 | 11000 | 3.5787 | |
|
| 3.6092 | 0.3047 | 12000 | 3.5333 | |
|
| 3.5105 | 0.3301 | 13000 | 3.5061 | |
|
| 3.5298 | 0.3555 | 14000 | 3.4776 | |
|
| 3.4857 | 0.3809 | 15000 | 3.4537 | |
|
| 3.4688 | 0.4063 | 16000 | 3.4490 | |
|
| 3.4914 | 0.4317 | 17000 | 3.4141 | |
|
| 3.3866 | 0.4571 | 18000 | 3.3970 | |
|
| 3.484 | 0.4825 | 19000 | 3.3963 | |
|
| 3.4187 | 0.5079 | 20000 | 3.3733 | |
|
| 3.2706 | 0.5333 | 21000 | 3.3546 | |
|
| 3.4344 | 0.5587 | 22000 | 3.3640 | |
|
| 3.3577 | 0.5841 | 23000 | 3.3337 | |
|
| 3.3058 | 0.6095 | 24000 | 3.3364 | |
|
| 3.3558 | 0.6349 | 25000 | 3.3195 | |
|
| 3.2865 | 0.6603 | 26000 | 3.2988 | |
|
| 3.3295 | 0.6856 | 27000 | 3.3054 | |
|
| 3.3024 | 0.7110 | 28000 | 3.2867 | |
|
| 3.1984 | 0.7364 | 29000 | 3.2751 | |
|
| 3.3467 | 0.7618 | 30000 | 3.2792 | |
|
| 3.3066 | 0.7872 | 31000 | 3.2647 | |
|
| 3.1441 | 0.8126 | 32000 | 3.2606 | |
|
| 3.3292 | 0.8380 | 33000 | 3.2656 | |
|
| 3.2561 | 0.8634 | 34000 | 3.2444 | |
|
| 3.2027 | 0.8888 | 35000 | 3.2549 | |
|
| 3.264 | 0.9142 | 36000 | 3.2401 | |
|
| 3.1928 | 0.9396 | 37000 | 3.2293 | |
|
| 3.2385 | 0.9650 | 38000 | 3.2376 | |
|
| 3.2274 | 0.9904 | 39000 | 3.2240 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|