|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: childes_30 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# childes_30 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.3366 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 30 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 40000 |
|
- training_steps: 100000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:--------:|:------:|:---------------:| |
|
| No log | 2.0964 | 2000 | 7.1029 | |
|
| 6.9987 | 4.1929 | 4000 | 5.8842 | |
|
| 6.9987 | 6.2893 | 6000 | 5.5487 | |
|
| 5.2204 | 8.3857 | 8000 | 5.2793 | |
|
| 5.2204 | 10.4822 | 10000 | 5.1049 | |
|
| 4.7358 | 12.5786 | 12000 | 4.9836 | |
|
| 4.7358 | 14.6751 | 14000 | 4.8829 | |
|
| 4.4216 | 16.7715 | 16000 | 4.8029 | |
|
| 4.4216 | 18.8679 | 18000 | 4.7423 | |
|
| 4.1842 | 20.9644 | 20000 | 4.6904 | |
|
| 4.1842 | 23.0608 | 22000 | 4.6458 | |
|
| 3.9858 | 25.1572 | 24000 | 4.6234 | |
|
| 3.9858 | 27.2537 | 26000 | 4.6056 | |
|
| 3.8189 | 29.3501 | 28000 | 4.5909 | |
|
| 3.8189 | 31.4465 | 30000 | 4.5868 | |
|
| 3.6763 | 33.5430 | 32000 | 4.5830 | |
|
| 3.6763 | 35.6394 | 34000 | 4.5782 | |
|
| 3.5493 | 37.7358 | 36000 | 4.5854 | |
|
| 3.5493 | 39.8323 | 38000 | 4.5964 | |
|
| 3.4327 | 41.9287 | 40000 | 4.6104 | |
|
| 3.4327 | 44.0252 | 42000 | 4.6369 | |
|
| 3.3112 | 46.1216 | 44000 | 4.6697 | |
|
| 3.3112 | 48.2180 | 46000 | 4.6953 | |
|
| 3.1908 | 50.3145 | 48000 | 4.7280 | |
|
| 3.1908 | 52.4109 | 50000 | 4.7629 | |
|
| 3.0857 | 54.5073 | 52000 | 4.7928 | |
|
| 3.0857 | 56.6038 | 54000 | 4.8196 | |
|
| 2.9936 | 58.7002 | 56000 | 4.8564 | |
|
| 2.9936 | 60.7966 | 58000 | 4.8890 | |
|
| 2.9113 | 62.8931 | 60000 | 4.9200 | |
|
| 2.9113 | 64.9895 | 62000 | 4.9539 | |
|
| 2.8353 | 67.0860 | 64000 | 4.9934 | |
|
| 2.8353 | 69.1824 | 66000 | 5.0297 | |
|
| 2.7673 | 71.2788 | 68000 | 5.0610 | |
|
| 2.7673 | 73.3753 | 70000 | 5.0805 | |
|
| 2.7091 | 75.4717 | 72000 | 5.1054 | |
|
| 2.7091 | 77.5681 | 74000 | 5.1283 | |
|
| 2.6563 | 79.6646 | 76000 | 5.1594 | |
|
| 2.6563 | 81.7610 | 78000 | 5.1836 | |
|
| 2.6077 | 83.8574 | 80000 | 5.2009 | |
|
| 2.6077 | 85.9539 | 82000 | 5.2230 | |
|
| 2.5635 | 88.0503 | 84000 | 5.2444 | |
|
| 2.5635 | 90.1468 | 86000 | 5.2631 | |
|
| 2.5229 | 92.2432 | 88000 | 5.2798 | |
|
| 2.5229 | 94.3396 | 90000 | 5.2951 | |
|
| 2.4886 | 96.4361 | 92000 | 5.3101 | |
|
| 2.4886 | 98.5325 | 94000 | 5.3189 | |
|
| 2.4584 | 100.6289 | 96000 | 5.3300 | |
|
| 2.4584 | 102.7254 | 98000 | 5.3327 | |
|
| 2.4337 | 104.8218 | 100000 | 5.3366 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|