franfj's picture
Librarian Bot: Add base_model information to model (#1)
e303421
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
base_model: xlm-roberta-base
model-index:
- name: SEMEVAL23_TASK3_SUBTASK1_MULTI
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SEMEVAL23_TASK3_SUBTASK1_MULTI
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7683
- F1: 0.6317
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.9869 | 1.0 | 40 | 0.9517 | 0.4244 |
| 0.5569 | 2.0 | 80 | 0.7365 | 0.5514 |
| 0.4559 | 3.0 | 120 | 0.7829 | 0.5348 |
| 0.2018 | 4.0 | 160 | 0.6281 | 0.6241 |
| 0.1125 | 5.0 | 200 | 0.9291 | 0.5614 |
| 0.2594 | 6.0 | 240 | 1.0367 | 0.5884 |
| 0.1883 | 7.0 | 280 | 0.7683 | 0.6317 |
| 0.1083 | 8.0 | 320 | 0.8660 | 0.6106 |
| 0.0659 | 9.0 | 360 | 0.8695 | 0.6189 |
| 0.2554 | 10.0 | 400 | 1.0094 | 0.5839 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.13.2