metadata
base_model: mistralai/Mistral-7B-Instruct-v0.3
datasets:
- generator
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Mistral-7B-text-to-sql-flash-attention-2-dataeval
results: []
Mistral-7B-text-to-sql-flash-attention-2-dataeval
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.4605
Model description
Article: https://medium.com/@frankmorales_91352/fine-tuning-the-llm-mistral-7b-instruct-v0-3-249c1814ceaf
Training and evaluation data
Fine Tuning and Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/FineTuning_LLM_Mistral_7B_Instruct_v0_1_for_text_to_SQL_EVALDATA.ipynb
Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/Evaluator_Mistral_7B_text_to_sql.ipynb
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- lr_scheduler_warmup_steps: 15
- num_epochs: 3
from transformers import TrainingArguments
args = TrainingArguments( output_dir="Mistral-7B-text-to-sql-flash-attention-2-dataeval",
num_train_epochs=3, # number of training epochs
per_device_train_batch_size=3, # batch size per device during training
gradient_accumulation_steps=8, #2 # number of steps before performing a backward/update pass
gradient_checkpointing=True, # use gradient checkpointing to save memory
optim="adamw_torch_fused", # use fused adamw optimizer
logging_steps=10, # log every 10 steps
#save_strategy="epoch", # save checkpoint every epoch
learning_rate=2e-4, # learning rate, based on QLoRA paper
bf16=True, # use bfloat16 precision
tf32=True, # use tf32 precision
max_grad_norm=0.3, # max gradient norm based on QLoRA paper
warmup_ratio=0.03, # warmup ratio based on QLoRA paper
weight_decay=0.01,
lr_scheduler_type="constant", # use constant learning rate scheduler
push_to_hub=True, # push model to hub
report_to="tensorboard", # report metrics to tensorboard
hub_token=access_token_write, # Add this line
load_best_model_at_end=True,
logging_dir="/content/gdrive/MyDrive/model/Mistral-7B-text-to-sql-flash-attention-2-dataeval/logs",
evaluation_strategy="steps",
eval_steps=10,
save_strategy="steps",
save_steps=10,
metric_for_best_model = "loss",
warmup_steps=15,
)
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8612 | 0.4020 | 10 | 0.6092 |
0.5849 | 0.8040 | 20 | 0.5307 |
0.4937 | 1.2060 | 30 | 0.4887 |
0.4454 | 1.6080 | 40 | 0.4670 |
0.425 | 2.0101 | 50 | 0.4544 |
0.3498 | 2.4121 | 60 | 0.4717 |
0.3439 | 2.8141 | 70 | 0.4605 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1