NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the generator dataset. It achieves the following results on the evaluation set:

Accuracy (Eval dataset and predict) for a sample of 10: 70.00%

Model description

Article: https://medium.com/@frankmorales_91352/fine-tuning-meta-llama-3-8b-with-medal-a-refined-approach-for-enhanced-medical-language-b924d226b09d

Training and evaluation data

Article: https://medium.com/@frankmorales_91352/fine-tuning-meta-llama-3-8b-with-medal-a-refined-approach-for-enhanced-medical-language-b924d226b09d

Fine-Tuning: https://github.com/frank-morales2020/MLxDL/blob/main/FineTuning_LLM_Meta_Llama_3_8B_for_MEDAL_EVALDATA.ipynb

Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/Meta_Llama_3_8B_for_MEDAL_EVALUATOR_evaldata.ipynb

Training procedure

from transformers import EarlyStoppingCallback trainer.add_callback(EarlyStoppingCallback(early_stopping_patience=5))

trainer.train()

trainer.save_model()

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1

from transformers import TrainingArguments

args = TrainingArguments(

output_dir="/content/gdrive/MyDrive/model/NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata",

#num_train_epochs=3,                    # number of training epochs
num_train_epochs=1,                     # number of training epochs for POC
per_device_train_batch_size=2,          # batch size per device during training

gradient_accumulation_steps=8,          # number of steps before performing a backward/update pass
gradient_checkpointing=True,            # use gradient checkpointing to save memory

optim="adamw_torch_fused",               # use fused adamw optimizer
logging_steps=200,                       # log every 200 steps

learning_rate=2e-4,                     # learning rate, based on QLoRA paper # i used in the first model
bf16=True,                              # use bfloat16 precision
tf32=True,                              # use tf32 precision
max_grad_norm=1.0,                      # max gradient norm based on QLoRA paper
warmup_ratio=0.05,                      # warmup ratio based on QLoRA paper = 0.03

weight_decay=0.01,
lr_scheduler_type="cosine",            # lr_scheduler_type="cosine" (Cosine Annealing Learning Rate)

push_to_hub=True,                       # push model to hub
report_to="tensorboard",                # report metrics to tensorboard

gradient_checkpointing_kwargs={"use_reentrant": True},

load_best_model_at_end=True,
logging_dir="/content/gdrive/MyDrive/model/NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata/logs",

evaluation_strategy="steps",    # Evaluate at step intervals
eval_steps=200,                 # Evaluate every 50 steps
save_strategy="steps",          # Save checkpoints at step intervals
save_steps=200,                 # Save every 50 steps (aligned with eval_steps)
metric_for_best_model = "loss",
]

)

Training results

Step Training Loss Validation Loss

200 2.505300 2.382469

3600 2.226800 2.223289

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for frankmorales2020/NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata

Adapter
(529)
this model