POC-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 2.2897
Model description
Training and evaluation data
Fine-Tuning: https://github.com/frank-morales2020/MLxDL/blob/main/FineTuning_LLM_Meta_Llama_3_8B_for_MEDAL_EVALDATA.ipynb
Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/Meta_Llama_3_8B_for_MEDAL_EVALUATOR_evaldata.ipynb
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.15
- num_epochs: 0.3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.7645 | 0.0069 | 100 | 2.6720 |
2.5917 | 0.0138 | 200 | 2.5243 |
2.5054 | 0.0207 | 300 | 2.4705 |
2.4406 | 0.0277 | 400 | 2.4379 |
2.4272 | 0.0346 | 500 | 2.4136 |
2.4171 | 0.0415 | 600 | 2.3942 |
2.3908 | 0.0484 | 700 | 2.3793 |
2.3808 | 0.0553 | 800 | 2.3664 |
2.3588 | 0.0622 | 900 | 2.3571 |
2.3595 | 0.0692 | 1000 | 2.3494 |
2.3411 | 0.0761 | 1100 | 2.3421 |
2.3308 | 0.0830 | 1200 | 2.3369 |
2.3358 | 0.0899 | 1300 | 2.3320 |
2.3295 | 0.0968 | 1400 | 2.3270 |
2.337 | 0.1037 | 1500 | 2.3228 |
2.3182 | 0.1106 | 1600 | 2.3195 |
2.3334 | 0.1176 | 1700 | 2.3161 |
2.3278 | 0.1245 | 1800 | 2.3128 |
2.3151 | 0.1314 | 1900 | 2.3101 |
2.3245 | 0.1383 | 2000 | 2.3075 |
2.3073 | 0.1452 | 2100 | 2.3053 |
2.3094 | 0.1521 | 2200 | 2.3036 |
2.3101 | 0.1590 | 2300 | 2.3013 |
2.3102 | 0.1660 | 2400 | 2.2995 |
2.3042 | 0.1729 | 2500 | 2.2980 |
2.2942 | 0.1798 | 2600 | 2.2965 |
2.2876 | 0.1867 | 2700 | 2.2951 |
2.3077 | 0.1936 | 2800 | 2.2941 |
2.2851 | 0.2005 | 2900 | 2.2931 |
2.2766 | 0.2075 | 3000 | 2.2923 |
2.2873 | 0.2144 | 3100 | 2.2916 |
2.2971 | 0.2213 | 3200 | 2.2910 |
2.2942 | 0.2282 | 3300 | 2.2906 |
2.2872 | 0.2351 | 3400 | 2.2903 |
2.2996 | 0.2420 | 3500 | 2.2901 |
2.2855 | 0.2489 | 3600 | 2.2899 |
2.2969 | 0.2559 | 3700 | 2.2898 |
2.2871 | 0.2628 | 3800 | 2.2898 |
2.2905 | 0.2697 | 3900 | 2.2897 |
2.2915 | 0.2766 | 4000 | 2.2897 |
2.2921 | 0.2835 | 4100 | 2.2897 |
2.3087 | 0.2904 | 4200 | 2.2897 |
2.3017 | 0.2974 | 4300 | 2.2897 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for frankmorales2020/POC-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata
Base model
meta-llama/Meta-Llama-3-8B