|
--- |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
datasets: |
|
- generator |
|
library_name: peft |
|
license: llama3 |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: POC-NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# POC-NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2356 |
|
|
|
## Model description |
|
|
|
Article: https://medium.com/@frankmorales_91352/sfttrainer-a-comprehensive-exploration-of-its-concept-advantages-limitations-history-and-19ab0926e74e |
|
|
|
## Training and evaluation data |
|
|
|
Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/Meta_Llama_3_8B_for_MEDAL_EVALUATOR_evaldata_NEW_POC.ipynb |
|
|
|
## Training procedure |
|
|
|
Fine Tuning: https://github.com/frank-morales2020/MLxDL/blob/main/FineTuning_LLM_Meta_Llama_3_8B_for_MEDAL_EVALDATA_PONEW.ipynb |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- lr_scheduler_warmup_steps: 1500 |
|
- num_epochs: 0.5 |
|
|
|
from transformers import TrainingArguments |
|
|
|
args = TrainingArguments( |
|
|
|
output_dir="/content/gdrive/MyDrive/model/POC-NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata", |
|
|
|
num_train_epochs=0.5, # number of training epochs for POC |
|
per_device_train_batch_size=3, #4 # batch size per device during training |
|
gradient_accumulation_steps=8, #6 # values like 8, 12, or even 16, # number of steps before performing a backward/update pass |
|
gradient_checkpointing=True, # use gradient checkpointing to save memory |
|
optim="adamw_torch_fused", # use fused adamw optimizer |
|
logging_steps=100, # log every 100 steps |
|
learning_rate=2e-4, # learning rate, based on QLoRA paper # i used in the first model |
|
#learning_rate=1e-5, |
|
bf16=True, # use bfloat16 precision |
|
tf32=True, # use tf32 precision |
|
max_grad_norm=1.0, # max gradient norm based on QLoRA paper |
|
warmup_ratio=0.03, # warmup ratio based on QLoRA paper = 0.03 |
|
|
|
weight_decay=0.01, |
|
lr_scheduler_type="constant", # use constant learning rate scheduler |
|
push_to_hub=True, # push model to hub |
|
report_to="tensorboard", # report metrics to tensorboard |
|
gradient_checkpointing_kwargs={"use_reentrant": True}, |
|
|
|
load_best_model_at_end=True, |
|
logging_dir="/content/gdrive/MyDrive/model/POC-NEW-Meta-Llama-3-8B-MEDAL-flash-attention-2-cosine-evaldata/logs", |
|
|
|
evaluation_strategy="steps", |
|
eval_steps=100, |
|
save_strategy="steps", |
|
save_steps=100, |
|
metric_for_best_model = "loss", |
|
warmup_steps=1500, |
|
) |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.4484 | 0.0207 | 100 | 2.3720 | |
|
| 2.3535 | 0.0415 | 200 | 2.3370 | |
|
| 2.3303 | 0.0622 | 300 | 2.3204 | |
|
| 2.3153 | 0.0830 | 400 | 2.3081 | |
|
| 2.3041 | 0.1037 | 500 | 2.2982 | |
|
| 2.2904 | 0.1245 | 600 | 2.2917 | |
|
| 2.2954 | 0.1452 | 700 | 2.2845 | |
|
| 2.2795 | 0.1660 | 800 | 2.2790 | |
|
| 2.2772 | 0.1867 | 900 | 2.2751 | |
|
| 2.2769 | 0.2075 | 1000 | 2.2711 | |
|
| 2.2711 | 0.2282 | 1100 | 2.2678 | |
|
| 2.2722 | 0.2489 | 1200 | 2.2644 | |
|
| 2.269 | 0.2697 | 1300 | 2.2610 | |
|
| 2.2651 | 0.2904 | 1400 | 2.2586 | |
|
| 2.2625 | 0.3112 | 1500 | 2.2550 | |
|
| 2.2579 | 0.3319 | 1600 | 2.2516 | |
|
| 2.2532 | 0.3527 | 1700 | 2.2501 | |
|
| 2.256 | 0.3734 | 1800 | 2.2471 | |
|
| 2.2509 | 0.3942 | 1900 | 2.2450 | |
|
| 2.2482 | 0.4149 | 2000 | 2.2433 | |
|
| 2.247 | 0.4357 | 2100 | 2.2406 | |
|
| 2.2404 | 0.4564 | 2200 | 2.2395 | |
|
| 2.2377 | 0.4771 | 2300 | 2.2372 | |
|
| 2.2373 | 0.4979 | 2400 | 2.2356 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |