PEFT
Safetensors
English
toxic-llama2 / README.md
freQuensy23's picture
Update README.md
7c8df22
|
raw
history blame
1.69 kB
---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
license: llama2
datasets:
- freQuensy23/toxic-answers
language:
- en
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by: t.me/freQuensy23
- **Model type: LLM (Llama2)
- **Language(s) (NLP): EN
- **License:** Llama-2-license
- **Finetuned from model [optional]: meta-llama/Llama-2-7b
### Model Sources [optional]
## How to Get Started with the Model
```python
import peft
import transformers
model = peft.AutoPeftModelForCausalLM.from_pretrained('freQuensy23/toxic-llama2')
tokenizer = transformers.AutoTokenizer.from_pretrained('transformers')
print(tokenizer.batch_decode(input_ids=tokenizer('User: What is 1 + 8?\nBot:', return_tensors='pt').input_ids))
```
[More Information Needed]
## Training Details
### Training Data
https://huggingface.co/freQuensy23/toxic-llama2
[More Information Needed]
### Results
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** A-100
- **Hours used:** 1
- **Cloud Provider:** Yandex-cloud
- **Compute Region:** Moscow
- **Carbon Emitted:** 11g
## Model Card Contact
t.me/freQuensy23
github.com/freQuensy23-coder
[email protected]
### Framework versions
- PEFT 0.7.1