test-ner / README.md
fredjaoko's picture
End of training
4d860e0 verified
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fredjaoko123-optistock-co-ke/huggingface/runs/cqpagizt)
# test-ner
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1608
- Precision: 0.8335
- Recall: 0.8535
- F1: 0.8434
- Accuracy: 0.9650
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1261 | 1.0 | 1274 | 0.1797 | 0.8049 | 0.8044 | 0.8047 | 0.9571 |
| 0.069 | 2.0 | 2548 | 0.1500 | 0.8278 | 0.8303 | 0.8290 | 0.9646 |
| 0.0465 | 3.0 | 3822 | 0.1608 | 0.8335 | 0.8535 | 0.8434 | 0.9650 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1