fsicoli's picture
Update README.md
d698c53 verified
|
raw
history blame
2.24 kB
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - fsicoli/cv16-fleurs
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: whisper-medium-pt-cv16-fleurs
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_1 pt
          type: mozilla-foundation/common_voice_16_1
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.09421927983206846
language:
  - pt

whisper-medium-pt-cv16-fleurs

This model is a fine-tuned version of openai/whisper-medium on the fsicoli/cv16-fleurs default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1409
  • Wer: 0.0942

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5000
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2552 0.93 1000 0.2200 0.1220
0.1928 1.87 2000 0.1645 0.1062
0.1646 2.8 3000 0.1508 0.1016
0.1333 3.74 4000 0.1438 0.0970
0.1027 4.67 5000 0.1409 0.0942

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1
  • Datasets 2.16.1
  • Tokenizers 0.15.2