README.md DELETED
@@ -1,36 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- tags:
5
- - toxic comments classification
6
- licenses:
7
- - cc-by-nc-sa
8
- ---
9
-
10
- ## Toxicity Classification Model
11
-
12
- This model is trained for toxicity classification task. The dataset used for training is the merge of the English parts of the three datasets by **Jigsaw** ([Jigsaw 2018](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Jigsaw 2019](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification), [Jigsaw 2020](https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification)), containing around 2 million examples. We split it into two parts and fine-tune a RoBERTa model ([RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692)) on it. The classifiers perform closely on the test set of the first Jigsaw competition, reaching the **AUC-ROC** of 0.98 and **F1-score** of 0.76.
13
-
14
- ## How to use
15
- ```python
16
- from transformers import RobertaTokenizer, RobertaForSequenceClassification
17
-
18
- # load tokenizer and model weights
19
- tokenizer = RobertaTokenizer.from_pretrained('SkolkovoInstitute/roberta_toxicity_classifier')
20
- model = RobertaForSequenceClassification.from_pretrained('SkolkovoInstitute/roberta_toxicity_classifier')
21
-
22
- # prepare the input
23
- batch = tokenizer.encode('you are amazing', return_tensors='pt')
24
-
25
- # inference
26
- model(batch)
27
- ```
28
-
29
- ## Licensing Information
30
-
31
- [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].
32
-
33
- [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]
34
-
35
- [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/
36
- [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json DELETED
@@ -1,34 +0,0 @@
1
- {
2
- "architectures": [
3
- "RobertaForSequenceClassification"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "bos_token_id": 0,
7
- "eos_token_id": 2,
8
- "gradient_checkpointing": false,
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 768,
12
- "id2label": {
13
- "0": "neutral",
14
- "1": "toxic"
15
- },
16
- "initializer_range": 0.02,
17
- "intermediate_size": 3072,
18
- "label2id": {
19
- "neutral": 0,
20
- "toxic": 1
21
- },
22
- "layer_norm_eps": 1e-05,
23
- "max_position_embeddings": 514,
24
- "model_type": "roberta",
25
- "num_attention_heads": 12,
26
- "num_hidden_layers": 12,
27
- "pad_token_id": 1,
28
- "position_embedding_type": "absolute",
29
- "problem_type": "single_label_classification",
30
- "torch_dtype": "float32",
31
- "transformers_version": "4.8.2",
32
- "type_vocab_size": 1,
33
- "vocab_size": 50265
34
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:896f52af161757594994d1fefe85ac79cbb57c9a96b26fba8ab93139b6426b8c
3
- size 501037970
 
 
 
 
special_tokens_map.json DELETED
@@ -1 +0,0 @@
1
- {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
 
 
tokenizer_config.json DELETED
@@ -1 +0,0 @@
1
- {"model_max_length": 512}
 
 
vocab.json DELETED
The diff for this file is too large to render. See raw diff