πŸ† TurkReviewSentiment-RoBERTa: Sentiment Analysis Model for Turkish Texts

πŸ“’ A fine-tuned XLM-RoBERTa model for sentiment analysis in Turkish texts!
This model can classify user reviews and texts as positive or negative sentiment.


πŸ” Model Details

Model Description

βœ… Base Model: XLM-RoBERTa
βœ… Finetuned from: xlm-roberta-base
βœ… Training Data: User reviews from e-commerce platforms
βœ… Task: Sentiment Analysis (Binary Classification: Positive / Negative)
βœ… Language: Turkish
βœ… Use Cases: Customer feedback analysis, social media monitoring, market research
βœ… License: MIT

Model Sources


πŸ“Œ How to Use the Model

import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

def load_model(model_path):
    model = AutoModelForSequenceClassification.from_pretrained(model_path)
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    return model, tokenizer

def get_sentiment(text, model, tokenizer):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
    device = next(model.parameters()).device
    inputs = {k: v.to(device) for k, v in inputs.items()}
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class = torch.argmax(logits, dim=1).item()
    return "positive" if predicted_class == 1 else "negative"

    
model_path = "fundaylnci/TurkReviewSentiment-RoBERTa"
model, tokenizer = load_model(model_path)

text ="Bu ΓΌrΓΌn harika!"
get_sentiment(text,model, tokenizer)

## Training Details

### Training Data

Dataset: E-commerce product reviews + manually labeled sentiment data


#### Preprocessing [optional]

Tokenization with xlm-roberta-base tokenizer


#### Training Hyperparameters

        training_args = TrainingArguments(
            output_dir="./results",
            evaluation_strategy="epoch",
            learning_rate=learning_rate,
            per_device_train_batch_size=batch_size,
            num_train_epochs=3,
            weight_decay=0.01,
            logging_dir="./logs",
            logging_steps=10,
        )

#### Speeds, Sizes, Times [optional]

Checkpoint Size: ~500MB

Training Time: ~6 hours on NVIDIA T4 GPU

## Evaluation

Evaluation Metrics: Accuracy, F1-score

# Version 149608e489c0979a661489d53245a30a48d3d38e
Accuracy: 0.961
Precision: 0.977
Recall: 0.980
F1 Score: 0.979


## Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator.

Hardware: NVIDIA T4 GPU
Training Hours: ~6 hours
Cloud Provider: Google Cloud
Estimated CO2 Emitted: ~3.2 kg

## Citation [optional]

**BibTeX:**

@article{turkreviewsentiment2025,
  title={TurkReviewSentiment-RoBERTa: Sentiment Analysis for Turkish Reviews},
  author={Your Name},
  journal={Hugging Face Model Hub},
  year={2025}
}
Downloads last month
64
Safetensors
Model size
278M params
Tensor type
F32
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for fundaylnci/TurkReviewSentiment-RoBERTa

Finetuned
(2873)
this model