fundaylnci commited on
Commit
2351421
·
verified ·
1 Parent(s): 11c99a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -152
README.md CHANGED
@@ -1,199 +1,112 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
  ### Model Description
 
 
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
 
71
 
72
- Use the code below to get started with the model.
 
 
73
 
74
- [More Information Needed]
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
87
 
88
  #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
 
 
 
 
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
120
 
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
  ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - sentiment-analysis
5
+ - text-classification
6
+ - turkish
7
+ license: mit
8
+
9
+ base_model:
10
+ - FacebookAI/xlm-roberta-base
11
  ---
12
 
13
+ # 🏆 TurkReviewSentiment-RoBERTa: Sentiment Analysis Model for Turkish Texts
 
 
14
 
15
+ 📢 **A fine-tuned XLM-RoBERTa model for sentiment analysis in Turkish texts!**
16
+ This model can classify user reviews and texts as **positive** or **negative** sentiment.
17
 
18
+ ---
19
 
20
+ ## 🔍 **Model Details**
21
 
22
  ### Model Description
23
+ ✅ **Base Model:** XLM-RoBERTa
24
+ ✅ **Finetuned from:** `xlm-roberta-base`
25
+ ✅ **Training Data:** User reviews from e-commerce platforms
26
+ ✅ **Task:** Sentiment Analysis (Binary Classification: Positive / Negative)
27
+ ✅ **Language:** Turkish
28
+ ✅ **Use Cases:** Customer feedback analysis, social media monitoring, market research
29
+ ✅ **License:** MIT
30
 
31
+ ### Model Sources
32
+ - **Repository:** [Hugging Face Model Page](https://huggingface.co/fundaylnci/TurkReviewSentiment-RoBERTa)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ ## 📌 **How to Use the Model**
37
+ ```python
38
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
39
 
40
+ model_name = "fundaylnci/TurkReviewSentiment-RoBERTa"
41
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
42
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
43
 
44
+ text = "Bu ürün harika!" # Example Turkish text
45
+ inputs = tokenizer(text, return_tensors="pt")
46
+ outputs = model(**inputs)
47
+ print(outputs.logits) # Model prediction
48
 
49
  ## Training Details
50
 
51
  ### Training Data
52
 
53
+ Dataset: E-commerce product reviews + manually labeled sentiment data
 
 
54
 
55
  ### Training Procedure
56
 
57
+ Epochs: 3
58
+ Batch Size: 16
59
+ Optimizer: AdamW
60
+
61
 
62
  #### Preprocessing [optional]
63
 
64
+ Tokenization with xlm-roberta-base tokenizer
65
 
66
 
67
  #### Training Hyperparameters
68
 
69
+ training_args = TrainingArguments(
70
+ output_dir="./results",
71
+ evaluation_strategy="epoch",
72
+ learning_rate=learning_rate,
73
+ per_device_train_batch_size=batch_size,
74
+ num_train_epochs=3,
75
+ weight_decay=0.01,
76
+ logging_dir="./logs",
77
+ logging_steps=10,
78
+ )
79
 
80
  #### Speeds, Sizes, Times [optional]
81
 
82
+ Checkpoint Size: ~500MB
83
 
84
+ Training Time: ~6 hours on NVIDIA T4 GPU
85
 
86
  ## Evaluation
87
 
88
+ Evaluation Metrics: Accuracy, F1-score
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
+ Accuracy = 92.3%
91
+ F1-score = 90.8%
92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
  ## Environmental Impact
95
 
96
+ Carbon emissions can be estimated using the Machine Learning Impact calculator.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ Hardware: NVIDIA T4 GPU
99
+ Training Hours: ~6 hours
100
+ Cloud Provider: Google Cloud
101
+ Estimated CO2 Emitted: ~3.2 kg
 
 
 
 
 
102
 
103
  ## Citation [optional]
104
 
 
 
105
  **BibTeX:**
106
 
107
+ @article{turkreviewsentiment2025,
108
+ title={TurkReviewSentiment-RoBERTa: Sentiment Analysis for Turkish Reviews},
109
+ author={Your Name},
110
+ journal={Hugging Face Model Hub},
111
+ year={2025}
112
+ }