Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,112 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
## Model Details
|
13 |
|
14 |
### Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
-
## How to
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
|
|
|
|
|
|
87 |
|
88 |
#### Preprocessing [optional]
|
89 |
|
90 |
-
|
91 |
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
#### Speeds, Sizes, Times [optional]
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
-
|
|
|
120 |
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
|
171 |
## Citation [optional]
|
172 |
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
**BibTeX:**
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- sentiment-analysis
|
5 |
+
- text-classification
|
6 |
+
- turkish
|
7 |
+
license: mit
|
8 |
+
|
9 |
+
base_model:
|
10 |
+
- FacebookAI/xlm-roberta-base
|
11 |
---
|
12 |
|
13 |
+
# 🏆 TurkReviewSentiment-RoBERTa: Sentiment Analysis Model for Turkish Texts
|
|
|
|
|
14 |
|
15 |
+
📢 **A fine-tuned XLM-RoBERTa model for sentiment analysis in Turkish texts!**
|
16 |
+
This model can classify user reviews and texts as **positive** or **negative** sentiment.
|
17 |
|
18 |
+
---
|
19 |
|
20 |
+
## 🔍 **Model Details**
|
21 |
|
22 |
### Model Description
|
23 |
+
✅ **Base Model:** XLM-RoBERTa
|
24 |
+
✅ **Finetuned from:** `xlm-roberta-base`
|
25 |
+
✅ **Training Data:** User reviews from e-commerce platforms
|
26 |
+
✅ **Task:** Sentiment Analysis (Binary Classification: Positive / Negative)
|
27 |
+
✅ **Language:** Turkish
|
28 |
+
✅ **Use Cases:** Customer feedback analysis, social media monitoring, market research
|
29 |
+
✅ **License:** MIT
|
30 |
|
31 |
+
### Model Sources
|
32 |
+
- **Repository:** [Hugging Face Model Page](https://huggingface.co/fundaylnci/TurkReviewSentiment-RoBERTa)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
## 📌 **How to Use the Model**
|
37 |
+
```python
|
38 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
39 |
|
40 |
+
model_name = "fundaylnci/TurkReviewSentiment-RoBERTa"
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
43 |
|
44 |
+
text = "Bu ürün harika!" # Example Turkish text
|
45 |
+
inputs = tokenizer(text, return_tensors="pt")
|
46 |
+
outputs = model(**inputs)
|
47 |
+
print(outputs.logits) # Model prediction
|
48 |
|
49 |
## Training Details
|
50 |
|
51 |
### Training Data
|
52 |
|
53 |
+
Dataset: E-commerce product reviews + manually labeled sentiment data
|
|
|
|
|
54 |
|
55 |
### Training Procedure
|
56 |
|
57 |
+
Epochs: 3
|
58 |
+
Batch Size: 16
|
59 |
+
Optimizer: AdamW
|
60 |
+
|
61 |
|
62 |
#### Preprocessing [optional]
|
63 |
|
64 |
+
Tokenization with xlm-roberta-base tokenizer
|
65 |
|
66 |
|
67 |
#### Training Hyperparameters
|
68 |
|
69 |
+
training_args = TrainingArguments(
|
70 |
+
output_dir="./results",
|
71 |
+
evaluation_strategy="epoch",
|
72 |
+
learning_rate=learning_rate,
|
73 |
+
per_device_train_batch_size=batch_size,
|
74 |
+
num_train_epochs=3,
|
75 |
+
weight_decay=0.01,
|
76 |
+
logging_dir="./logs",
|
77 |
+
logging_steps=10,
|
78 |
+
)
|
79 |
|
80 |
#### Speeds, Sizes, Times [optional]
|
81 |
|
82 |
+
Checkpoint Size: ~500MB
|
83 |
|
84 |
+
Training Time: ~6 hours on NVIDIA T4 GPU
|
85 |
|
86 |
## Evaluation
|
87 |
|
88 |
+
Evaluation Metrics: Accuracy, F1-score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
Accuracy = 92.3%
|
91 |
+
F1-score = 90.8%
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
## Environmental Impact
|
95 |
|
96 |
+
Carbon emissions can be estimated using the Machine Learning Impact calculator.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
Hardware: NVIDIA T4 GPU
|
99 |
+
Training Hours: ~6 hours
|
100 |
+
Cloud Provider: Google Cloud
|
101 |
+
Estimated CO2 Emitted: ~3.2 kg
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
## Citation [optional]
|
104 |
|
|
|
|
|
105 |
**BibTeX:**
|
106 |
|
107 |
+
@article{turkreviewsentiment2025,
|
108 |
+
title={TurkReviewSentiment-RoBERTa: Sentiment Analysis for Turkish Reviews},
|
109 |
+
author={Your Name},
|
110 |
+
journal={Hugging Face Model Hub},
|
111 |
+
year={2025}
|
112 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|