|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-tiny-patch4-window7-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swin-tiny-patch4-window7-224-finetuned-rsna-2018 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7410179640718563 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-tiny-patch4-window7-224-finetuned-rsna-2018 |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5745 |
|
- Accuracy: 0.7410 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:| |
|
| 0.6448 | 0.9940 | 83 | 0.6735 | 0.6737 | |
|
| 0.736 | 2.0 | 167 | 0.6969 | 0.6557 | |
|
| 0.6895 | 2.9940 | 250 | 0.6265 | 0.6916 | |
|
| 0.6631 | 4.0 | 334 | 0.6275 | 0.7156 | |
|
| 0.6725 | 4.9940 | 417 | 0.6311 | 0.7126 | |
|
| 0.6778 | 6.0 | 501 | 0.6194 | 0.7066 | |
|
| 0.6734 | 6.9940 | 584 | 0.6024 | 0.7141 | |
|
| 0.6231 | 8.0 | 668 | 0.6082 | 0.7231 | |
|
| 0.6164 | 8.9940 | 751 | 0.5846 | 0.7171 | |
|
| 0.6261 | 10.0 | 835 | 0.5682 | 0.7380 | |
|
| 0.6153 | 10.9940 | 918 | 0.6007 | 0.7186 | |
|
| 0.6046 | 12.0 | 1002 | 0.5745 | 0.7410 | |
|
| 0.5679 | 12.9940 | 1085 | 0.5957 | 0.7231 | |
|
| 0.6027 | 14.0 | 1169 | 0.5884 | 0.7216 | |
|
| 0.6249 | 14.9940 | 1252 | 0.5808 | 0.7365 | |
|
| 0.6059 | 16.0 | 1336 | 0.5699 | 0.7350 | |
|
| 0.5776 | 16.9940 | 1419 | 0.5770 | 0.7320 | |
|
| 0.5903 | 18.0 | 1503 | 0.5806 | 0.7216 | |
|
| 0.5633 | 18.9940 | 1586 | 0.5768 | 0.7380 | |
|
| 0.5544 | 20.0 | 1670 | 0.5830 | 0.7350 | |
|
| 0.5515 | 20.9940 | 1753 | 0.5966 | 0.7260 | |
|
| 0.5249 | 22.0 | 1837 | 0.6079 | 0.7335 | |
|
| 0.5212 | 22.9940 | 1920 | 0.5972 | 0.7246 | |
|
| 0.5268 | 24.0 | 2004 | 0.5922 | 0.7231 | |
|
| 0.5406 | 24.9940 | 2087 | 0.6100 | 0.7350 | |
|
| 0.5257 | 26.0 | 2171 | 0.6004 | 0.7305 | |
|
| 0.5152 | 26.9940 | 2254 | 0.6092 | 0.7320 | |
|
| 0.4858 | 28.0 | 2338 | 0.6100 | 0.7231 | |
|
| 0.5412 | 28.9940 | 2421 | 0.6116 | 0.7350 | |
|
| 0.4972 | 29.8204 | 2490 | 0.6120 | 0.7290 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.3 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|