TraceVLA-Phi3V

TraceVLA-Phi3V model is a vision-language-action model obtained by finetuning the base OpenVLA-Phi3V Model on the Open X-Embodiment robot mixture dataset with visual trace prompting technique.

Results on SimplerEnv Fractal + SimplerEnv:

Fractal:

Policy/Settings Pick up Coke Move near Open/Close Drawer Put in Drawer Average
(Visual Matching) OpenVLA-Phi3V 56.7% 53.3% 38.4% 15.7% 41.0%
(Visual Matching) TraceVLA-Phi3V 69.7% 70.8% 35.4% 0.% 44.0%
(Variant Aggregation) OpenVLA-Phi3V 55.4% 57.7% 19.3% 10.6% 35.8%
(Variant Aggregation) TraceVLA-Phi3V 75.4% 67.8% 37.5% 0.0% 45.1%

Bridge:

Policy/Settings Put Spoon Put Carrot Stack Block Put Eggplant Average
OpenVLA-Phi3V 12.5% 0% 0% 8.3% 5.2%
TraceVLA-Phi3V 8.3% 0% 12.5% 66.7% 21.9%

Sample Inference Code

Here is the sample inference code of OpenVLA-Phi3V.

# Load Processor & VLA
from transformers import AutoModelForCausalLM , AutoProcessor
from PIL import Image
import json
processor = AutoProcessor.from_pretrained(
    model_path, trust_remote_code=True, num_crops=1
)

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    _attn_implementation='flash_attention_2',
    use_cache=False
).cuda()

# Load Visual Trace Processor
from prismatic.eval import TraceProcessor
trace_processor = TraceProcessor(cotracker_model_path)

# Load dataset statistics 
dataset_stats_dir = os.path.join(model_path, 'dataset_statistics.json')
with open(dataset_stats_dir, 'r') as file: 
    action_norm_stats = json.load(file)[dataset_name]['action']
    model.prepare_action_inference(action_norm_stats, processor.tokenizer.vocab_size)

lang: str = None # Task language instruction
### IMPORTANT: Make sure image is of size (336,336)
image: PIL.Image = None # Image observation

# Get visual trace overlaid image observation
image = resize_image(image, (256,256)) ### 256x256 is the resolution of Co-Tracker Input Resolution
image_overlaid, has_trace = self.trace_processors[i].process_image(image) 
image_overlaid = resize_image(image_overlaid, (336,336)) ### 336x336 is the resolution of Phi3V image encoder.

# Prepare TraceVLA prompt format
if not has_trace:
    prompt_message = {
    'role': 'user',
    'content': f'<|image_1|><|image_2|>\nWhat action should the robot take to {task_description}?',
    }
else:
    prompt_message = {
        'role': 'user',
        'content': f'You are given two images: one with the original robot observation <|image_1|>, and another one marked with historial traces of the robot end effector and moving objects <|image_2|>.\nWhat action should the robot take to {task_description}?',
    }
prompt = processor.tokenizer.apply_chat_template(
    [prompt_message], tokenize=False, add_generation_prompt=True
)
inputs = processor(prompt, [image, image_overlaid]).to("cuda:0", dtype=torch.bfloat16)

    
# Get the action output from model
model.predict_action(**inputs)

For more examples, including scripts for finetuning OpenVLA-Phi3V models on your own robot demonstration datasets, check out our repository.

Citation

If you find our code or models useful in your work, please cite our paper:

@misc{zheng2024tracevlavisualtraceprompting,
      title={TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies}, 
      author={Ruijie Zheng and Yongyuan Liang and Shuaiyi Huang and Jianfeng Gao and Hal Daumé III and Andrey Kolobov and Furong Huang and Jianwei Yang},
      year={2024},
      eprint={2412.10345},
      archivePrefix={arXiv},
      primaryClass={cs.RO},
      url={https://arxiv.org/abs/2412.10345}, 
}
Downloads last month
11
Inference Examples
Unable to determine this model's library. Check the docs .

Collection including furonghuang-lab/tracevla_phi3v