anton-l HF staff commited on
Commit
07a3b4a
·
1 Parent(s): b3c4d9c
Files changed (1) hide show
  1. pipeline_glide.py +6 -2
pipeline_glide.py CHANGED
@@ -895,13 +895,17 @@ class GLIDE(DiffusionPipeline):
895
  noise_residual, pred_variance = torch.split(model_output, 3, dim=1)
896
 
897
  # 2. predict previous mean of image x_t-1
898
- pred_prev_image = self.upscale_noise_scheduler.step(noise_residual, image, t, num_inference_steps_upscale, eta)
 
 
899
 
900
  # 3. optionally sample variance
901
  variance = 0
902
  if eta > 0:
903
  noise = torch.randn(image.shape, generator=generator).to(image.device)
904
- variance = self.upscale_noise_scheduler.get_variance(t, num_inference_steps_upscale).sqrt() * eta * noise
 
 
905
 
906
  # 4. set current image to prev_image: x_t -> x_t-1
907
  image = pred_prev_image + variance
 
895
  noise_residual, pred_variance = torch.split(model_output, 3, dim=1)
896
 
897
  # 2. predict previous mean of image x_t-1
898
+ pred_prev_image = self.upscale_noise_scheduler.step(
899
+ noise_residual, image, t, num_inference_steps_upscale, eta
900
+ )
901
 
902
  # 3. optionally sample variance
903
  variance = 0
904
  if eta > 0:
905
  noise = torch.randn(image.shape, generator=generator).to(image.device)
906
+ variance = (
907
+ self.upscale_noise_scheduler.get_variance(t, num_inference_steps_upscale).sqrt() * eta * noise
908
+ )
909
 
910
  # 4. set current image to prev_image: x_t -> x_t-1
911
  image = pred_prev_image + variance