|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: futureProofGlitch/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- speechcolab/gigaspeech |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: FutureProofGlitch - Whisper Small - Version 2.0 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Gigaspeech |
|
type: speechcolab/gigaspeech |
|
config: xs |
|
split: test |
|
args: xs |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 16.45244089773603 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# FutureProofGlitch - Whisper Small - Version 2.0 |
|
|
|
This model is a fine-tuned version of [futureProofGlitch/whisper-small](https://huggingface.co/futureProofGlitch/whisper-small) on the Gigaspeech dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3078 |
|
- Wer Ortho: 28.4362 |
|
- Wer: 16.4524 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 1000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| |
|
| 0.2267 | 0.5 | 500 | 0.3309 | 29.5720 | 18.0966 | |
|
| 0.2035 | 0.99 | 1000 | 0.3078 | 28.4362 | 16.4524 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|