hubert-classifier-aug-fold-3

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6214
  • Accuracy: 0.8544
  • Precision: 0.8720
  • Recall: 0.8544
  • F1: 0.8540
  • Binary: 0.8989

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.24 50 4.4176 0.0172 0.0140 0.0172 0.0083 0.1549
No log 0.48 100 4.3072 0.0434 0.0497 0.0434 0.0197 0.2778
No log 0.72 150 3.9604 0.0906 0.0606 0.0906 0.0446 0.3581
No log 0.96 200 3.6355 0.1191 0.0507 0.1191 0.0558 0.3783
4.235 1.2 250 3.3489 0.1700 0.0800 0.1700 0.0858 0.4157
4.235 1.44 300 3.1008 0.2015 0.1270 0.2015 0.1158 0.4382
4.235 1.68 350 2.8220 0.2906 0.2075 0.2906 0.2012 0.5014
4.235 1.92 400 2.5557 0.3843 0.3160 0.3843 0.3099 0.5671
3.2055 2.16 450 2.1790 0.4801 0.4047 0.4801 0.4036 0.6344
3.2055 2.4 500 1.9034 0.5790 0.5557 0.5790 0.5261 0.7028
3.2055 2.63 550 1.6707 0.6135 0.6116 0.6135 0.5701 0.7273
3.2055 2.87 600 1.4658 0.6285 0.6047 0.6285 0.5817 0.7381
2.1878 3.11 650 1.3665 0.6457 0.6522 0.6457 0.6153 0.7534
2.1878 3.35 700 1.2309 0.6757 0.6806 0.6757 0.6446 0.7730
2.1878 3.59 750 1.1077 0.7169 0.7307 0.7169 0.6966 0.7999
2.1878 3.83 800 1.0393 0.7341 0.7548 0.7341 0.7226 0.8130
1.534 4.07 850 0.9478 0.7678 0.7794 0.7678 0.7572 0.8384
1.534 4.31 900 0.8755 0.7715 0.7789 0.7715 0.7627 0.8395
1.534 4.55 950 0.8563 0.7618 0.7737 0.7618 0.7491 0.8330
1.534 4.79 1000 0.7866 0.8007 0.8046 0.8007 0.7921 0.8616
1.2035 5.03 1050 0.7462 0.8007 0.8212 0.8007 0.7945 0.8591
1.2035 5.27 1100 0.7003 0.8157 0.8272 0.8157 0.8126 0.8717
1.2035 5.51 1150 0.7421 0.8105 0.8262 0.8105 0.8074 0.8672
1.2035 5.75 1200 0.7638 0.7993 0.8294 0.7993 0.7979 0.8595
1.2035 5.99 1250 0.6872 0.8187 0.8330 0.8187 0.8171 0.8742
0.9909 6.23 1300 0.6378 0.8345 0.8462 0.8345 0.8338 0.8840
0.9909 6.47 1350 0.6835 0.8075 0.8266 0.8075 0.8063 0.8669
0.9909 6.71 1400 0.6367 0.8345 0.8480 0.8345 0.8337 0.8874
0.9909 6.95 1450 0.5793 0.8434 0.8521 0.8434 0.8425 0.8931
0.8826 7.19 1500 0.6528 0.8307 0.8458 0.8307 0.8293 0.8824
0.8826 7.43 1550 0.6361 0.8225 0.8382 0.8225 0.8218 0.8761
0.8826 7.66 1600 0.6189 0.8360 0.8478 0.8360 0.8334 0.8855
0.8826 7.9 1650 0.6078 0.8337 0.8433 0.8337 0.8321 0.8831
0.7752 8.14 1700 0.6868 0.8315 0.8436 0.8315 0.8289 0.8835
0.7752 8.38 1750 0.6118 0.8419 0.8549 0.8419 0.8411 0.8897
0.7752 8.62 1800 0.5837 0.8532 0.8660 0.8532 0.8531 0.8974
0.7752 8.86 1850 0.5758 0.8487 0.8613 0.8487 0.8494 0.8956
0.7067 9.1 1900 0.6950 0.8307 0.8490 0.8307 0.8279 0.8827
0.7067 9.34 1950 0.5968 0.8479 0.8595 0.8479 0.8470 0.8942
0.7067 9.58 2000 0.5714 0.8614 0.8696 0.8614 0.8613 0.9035
0.7067 9.82 2050 0.6389 0.8427 0.8538 0.8427 0.8415 0.8903
0.6457 10.06 2100 0.6504 0.8502 0.8639 0.8502 0.8504 0.8948
0.6457 10.3 2150 0.5776 0.8547 0.8659 0.8547 0.8534 0.8988
0.6457 10.54 2200 0.6775 0.8434 0.8570 0.8434 0.8438 0.8912
0.6457 10.78 2250 0.5849 0.8569 0.8686 0.8569 0.8579 0.9013
0.6098 11.02 2300 0.5767 0.8622 0.8706 0.8622 0.8632 0.9037
0.6098 11.26 2350 0.6875 0.8404 0.8588 0.8404 0.8404 0.8898
0.6098 11.5 2400 0.7397 0.8352 0.8483 0.8352 0.8340 0.8865
0.6098 11.74 2450 0.5998 0.8629 0.8716 0.8629 0.8618 0.9053
0.6098 11.98 2500 0.6435 0.8449 0.8549 0.8449 0.8441 0.8918
0.5538 12.22 2550 0.6969 0.8502 0.8640 0.8502 0.8508 0.8965
0.5538 12.46 2600 0.6323 0.8577 0.8710 0.8577 0.8566 0.9006
0.5538 12.69 2650 0.6989 0.8532 0.8660 0.8532 0.8525 0.8981
0.5538 12.93 2700 0.6736 0.8554 0.8666 0.8554 0.8552 0.8994
0.5356 13.17 2750 0.6737 0.8487 0.8584 0.8487 0.8469 0.8960
0.5356 13.41 2800 0.6893 0.8457 0.8565 0.8457 0.8452 0.8921

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1
Downloads last month
16
Safetensors
Model size
94.6M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fydhfzh/hubert-classifier-aug-fold-3

Finetuned
(73)
this model

Space using fydhfzh/hubert-classifier-aug-fold-3 1