distilbert-base-uncased-finetuned-emotion_new

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8847
  • Accuracy: 0.8
  • F1: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5408 1.0 4 0.7674 0.8 0.7333
0.4368 2.0 8 0.7471 0.8 0.7333
0.3222 3.0 12 0.7318 0.8 0.7333
0.4061 4.0 16 0.7289 0.8 0.7333
0.3774 5.0 20 0.7732 0.8 0.7333
0.3304 6.0 24 0.7874 0.8 0.7333
0.3042 7.0 28 0.8036 0.8 0.7333
0.4571 8.0 32 0.8038 0.8 0.7333
0.1992 9.0 36 0.8271 0.8 0.7333
0.2661 10.0 40 0.8498 0.8 0.7333
0.2361 11.0 44 0.8582 0.8 0.7333
0.2292 12.0 48 0.8620 0.8 0.7333
0.2363 13.0 52 0.8678 0.8 0.7333
0.2574 14.0 56 0.8672 0.8 0.7333
0.5177 15.0 60 0.8668 0.8 0.7333
0.226 16.0 64 0.8726 0.8 0.7333
0.1726 17.0 68 0.8788 0.8 0.7333
0.2439 18.0 72 0.8823 0.8 0.7333
0.2005 19.0 76 0.8842 0.8 0.7333
0.2541 20.0 80 0.8847 0.8 0.7333

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
22
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gK29382231121/distilbert-base-uncased-finetuned-emotion_new

Finetuned
(7086)
this model