vit-emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2112
  • Accuracy: 0.5938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.8928 0.375
No log 2.0 80 1.5709 0.375
No log 3.0 120 1.4385 0.4938
No log 4.0 160 1.3183 0.5437
No log 5.0 200 1.2514 0.5813
No log 6.0 240 1.2412 0.5563
No log 7.0 280 1.2048 0.5875
No log 8.0 320 1.1530 0.6188
No log 9.0 360 1.1870 0.55
No log 10.0 400 1.2160 0.5563
No log 11.0 440 1.1182 0.5563
No log 12.0 480 1.1162 0.5938
1.0857 13.0 520 1.0960 0.6312
1.0857 14.0 560 1.1724 0.55
1.0857 15.0 600 1.1100 0.625

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
50
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gabrielganan/vit-emotion_classification

Finetuned
(1772)
this model

Evaluation results