TrOCR-Ar-Small / README.md
gagan3012's picture
Update README.md
0fcc287
|
raw
history blame
2.52 kB
---
tags:
- generated_from_trainer
- trocr
language: ar
model-index:
- name: TrOCR-Ar-Small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TrOCR-Ar-Small
This model is a fine-tuned version of [microsoft/trocr-small-stage1](https://huggingface.co/microsoft/trocr-small-stage1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2771
- Cer: 0.8211
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.6363 | 0.14 | 1000 | 2.7594 | 0.9370 |
| 2.7508 | 0.29 | 2000 | 2.6589 | 0.8901 |
| 2.6519 | 0.43 | 3000 | 2.6059 | 0.8647 |
| 2.5936 | 0.57 | 4000 | 2.5360 | 0.7941 |
| 2.5069 | 0.72 | 5000 | 2.4701 | 0.8262 |
| 2.4606 | 0.86 | 6000 | 2.4427 | 0.7552 |
| 2.4046 | 1.0 | 7000 | 2.4262 | 0.7822 |
| 2.3628 | 1.15 | 8000 | 2.3880 | 0.8186 |
| 2.3458 | 1.29 | 9000 | 2.3589 | 0.8262 |
| 2.3062 | 1.43 | 10000 | 2.3704 | 0.8693 |
| 2.2884 | 1.58 | 11000 | 2.3065 | 0.8034 |
| 2.263 | 1.72 | 12000 | 2.3413 | 0.8545 |
| 2.2473 | 1.86 | 13000 | 2.3314 | 0.7996 |
| 2.2318 | 2.01 | 14000 | 2.3034 | 0.8254 |
| 2.2004 | 2.15 | 15000 | 2.3068 | 0.8461 |
| 2.1774 | 2.29 | 16000 | 2.2799 | 0.8207 |
| 2.1684 | 2.44 | 17000 | 2.2746 | 0.8249 |
| 2.1637 | 2.58 | 18000 | 2.2540 | 0.7797 |
| 2.1418 | 2.72 | 19000 | 2.2595 | 0.7937 |
| 2.1309 | 2.87 | 20000 | 2.2771 | 0.8211 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6