PyTorch
English
llama
koalazf99's picture
Update README.md
f631292 verified
---
license: llama2
datasets:
- gair-prox/open-web-math-pro
language:
- en
base_model:
- codellama/CodeLlama-7b-hf
---
# CodeLlama-7B-ProXMath
<p align="center">
<img src="prox-teaser.png">
</p>
[ArXiv](http://arxiv.org/abs/2409.17115) | [Data: OpenWebMath-Pro](https://huggingface.co/datasets/gair-prox/open-web-math-pro) | [Code](https://github.com/GAIR-NLP/program-every-example)
**CodeLlama-7B-ProXMath** is a math-adapted language model that is continually pre-trained on [OpenWebMath-Pro](https://huggingface.co/datasets/gair-prox/open-web-math-pro) (a refined version by ProX) for **10**B tokens.
## Evaluations
ProX models are evaluated on 9 common math reasoning benchmarks.
| Model | asdiv | gsm8k | mathqa | mawps | minerva_math | mmlu_stem | sat_math | svamp | tabmwp | average |
|-----------------------|:--------:|:--------:|:--------:|:--------:|:------------:|:---------:|:--------:|:--------:|:--------:|:--------:|
| CodeLlama-7B | 50.7 | 11.8 | 14.3 | 62.6 | 5.0 | 20.4 | 21.9 | 44.2 | 30.6 | 29.1 |
| CodeLlama-7B-ProXMath | **67.9** | **35.6** | **38.9** | **82.7** | **17.6** | **42.6** | **62.5** | **55.8** | **41.3** | **49.4** |
### Citation
```
@article{zhou2024programming,
title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale},
author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei},
journal={arXiv preprint arXiv:2409.17115},
year={2024}
}
```