BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("gallantblade/bge-base-financial-matryoshka")
# Run inference
sentences = [
"What are the terms of Delta Air Lines' agreements with its regional carriers through Delta Connection®?",
"Delta Connection® consists of agreements with regional airlines like Endeavor Air and SkyWest Airlines to operate flights under Delta's code. Delta controls major operational aspects like scheduling and pricing, while the regional carriers supply the services. The agreements typically last at least ten years with options for extensions.",
'Our invention of the GPU in 1999 defined modern computer graphics and established NVIDIA as the leader in computer graphics.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7086 | 0.7057 | 0.7 | 0.6886 | 0.6443 |
cosine_accuracy@3 | 0.8357 | 0.8371 | 0.8314 | 0.8186 | 0.79 |
cosine_accuracy@5 | 0.8829 | 0.8743 | 0.8671 | 0.8557 | 0.8257 |
cosine_accuracy@10 | 0.9314 | 0.9271 | 0.9214 | 0.9229 | 0.8829 |
cosine_precision@1 | 0.7086 | 0.7057 | 0.7 | 0.6886 | 0.6443 |
cosine_precision@3 | 0.2786 | 0.279 | 0.2771 | 0.2729 | 0.2633 |
cosine_precision@5 | 0.1766 | 0.1749 | 0.1734 | 0.1711 | 0.1651 |
cosine_precision@10 | 0.0931 | 0.0927 | 0.0921 | 0.0923 | 0.0883 |
cosine_recall@1 | 0.7086 | 0.7057 | 0.7 | 0.6886 | 0.6443 |
cosine_recall@3 | 0.8357 | 0.8371 | 0.8314 | 0.8186 | 0.79 |
cosine_recall@5 | 0.8829 | 0.8743 | 0.8671 | 0.8557 | 0.8257 |
cosine_recall@10 | 0.9314 | 0.9271 | 0.9214 | 0.9229 | 0.8829 |
cosine_ndcg@10 | 0.8189 | 0.8164 | 0.8119 | 0.8032 | 0.7644 |
cosine_mrr@10 | 0.783 | 0.781 | 0.7769 | 0.7655 | 0.7265 |
cosine_map@100 | 0.7856 | 0.7839 | 0.7801 | 0.7684 | 0.7313 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 9 tokens
- mean: 20.65 tokens
- max: 45 tokens
- min: 9 tokens
- mean: 45.78 tokens
- max: 512 tokens
- Samples:
anchor positive What year was Eli Lilly and Company incorporated, and in which state did this occur?
Eli Lilly and Company was incorporated in 1901 in Indiana to succeed the drug manufacturing business founded in Indianapolis, Indiana, in 1876 by Colonel Eli Lilly.
How are financial statement indexes presented in a document?
The financial statement indexes, including those for schedules, are organized under Part IV Item 15, specific as 'Exhibits, Financial Statement Schedules'.
How many physicians are part of the domestic Office of the Chief Medical Officer at DaVita as of December 31, 2023?
As of December 31, 2023, our domestic Chief Medical Officer leads a team of 22 nephrologists in our physician leadership team as part of our domestic Office of the Chief Medical Officer.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.6125 | - | - | - | - | - |
0.9746 | 12 | - | 0.8085 | 0.8074 | 0.7977 | 0.7790 | 0.7402 |
1.6244 | 20 | 0.6341 | - | - | - | - | - |
1.9492 | 24 | - | 0.8188 | 0.8155 | 0.8081 | 0.7995 | 0.7529 |
2.4365 | 30 | 0.4735 | - | - | - | - | - |
2.9239 | 36 | - | 0.8197 | 0.8161 | 0.8107 | 0.8003 | 0.7632 |
3.2487 | 40 | 0.376 | - | - | - | - | - |
3.8985 | 48 | - | 0.8189 | 0.8164 | 0.8119 | 0.8032 | 0.7644 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.4.0+cu124
- Accelerate: 1.1.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gallantblade/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.709
- Cosine Accuracy@3 on dim 768self-reported0.836
- Cosine Accuracy@5 on dim 768self-reported0.883
- Cosine Accuracy@10 on dim 768self-reported0.931
- Cosine Precision@1 on dim 768self-reported0.709
- Cosine Precision@3 on dim 768self-reported0.279
- Cosine Precision@5 on dim 768self-reported0.177
- Cosine Precision@10 on dim 768self-reported0.093
- Cosine Recall@1 on dim 768self-reported0.709
- Cosine Recall@3 on dim 768self-reported0.836