|
--- |
|
tags: |
|
- generation |
|
language: |
|
- multilingual |
|
- cs |
|
- en |
|
--- |
|
|
|
# Mt5-base for Czech+English Generative Question Answering |
|
|
|
This is the [mt5-base](https://huggingface.co/google/mt5-base) model with an LM head for a generation of extractive answers. In contrary to our [mt5-base-priming](https://huggingface.co/gaussalgo/mt5-base-priming-QA_en-cs/edit/main/README.md), this is a traditional sequence2sequence model without priming, though can also be used on other Text extraction tasks, such as Named Entity Recognition in zero-shot settings (with a significant decay in quality, compared to priming). |
|
|
|
## Intended uses & limitations |
|
|
|
This model is purposed to *generate* a segment of a given context that contains an answer to a given question (Extractive Question Answering) in English and Czech. |
|
Given the fine-tuning on two languages and a good reported zero-shot cross-lingual applicability of other fine-tuned multilingual large language models, the model will likely also work on other languages as well, with a specific decay in quality. |
|
|
|
Note that despite its size, English SQuAD has a variety of reported biases, |
|
conditioned by the relative position or type of the answer in the context that can affect the model's performance on new data |
|
(see, e.g. [L. Mikula (2022)](https://is.muni.cz/th/adh58/?lang=en), Chap. 4.1). |
|
|
|
## Usage |
|
|
|
Here is how to use this model to answer the question on a given context using 🤗 Transformers in PyTorch: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("gaussalgo/mt5-base-generative-QA_en-cs") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("gaussalgo/mt5-base-generative-QA_en-cs") |
|
|
|
context = """ |
|
Podle slovenského lidového podání byl Juro Jánošík obdařen magickými předměty (kouzelná valaška, čarovný opasek), |
|
které mu dodávaly nadpřirozené schopnosti. Okrádal především šlechtice, |
|
trestal panské dráby a ze svého lupu vyděloval část pro chudé, tedy bohatým bral a chudým dával. |
|
""" |
|
question = "Jaké schopnosti daly magické předměty Juro Jánošíkovi?" |
|
|
|
inputs = tokenizer(question, context, return_tensors="pt") |
|
outputs = model.generate(**inputs) |
|
|
|
print("Answer:") |
|
print(tokenizer.decode(outputs)) |
|
|
|
``` |
|
|
|
## Training |
|
|
|
The model has been trained using [Adaptor library](https://github.com/gaussalgo/adaptor) v0.1.5, in parallel on both Czech and English data, with the following parameters: |
|
|
|
```python |
|
training_arguments = AdaptationArguments(output_dir="train_dir", |
|
learning_rate=5e-5, |
|
stopping_strategy=StoppingStrategy.ALL_OBJECTIVES_CONVERGED, |
|
do_train=True, |
|
do_eval=True, |
|
warmup_steps=1000, |
|
max_steps=100000, |
|
gradient_accumulation_steps=4, |
|
eval_steps=100, |
|
logging_steps=10, |
|
save_steps=1000, |
|
num_train_epochs=50, |
|
evaluation_strategy="steps", |
|
remove_unused_columns=False) |
|
|
|
``` |
|
|
|
You can find the full training script in [train_mt5_qa_en+cs.py](https://huggingface.co/gaussalgo/mt5-base-generative-QA_en-cs/blob/main/train_mt5_qa_en%2Bcs.py), reproducible after a specific data preprocessing for Czech SQAD in [parse_czech_squad.py](parse_czech_squad.py) |