|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: pubmed-abs-sub-02 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pubmed-abs-sub-02 |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2005 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.6442 | 0.11 | 500 | 0.5078 | |
|
| 0.455 | 0.21 | 1000 | 0.3945 | |
|
| 0.4276 | 0.32 | 1500 | 0.3555 | |
|
| 0.3951 | 0.43 | 2000 | 0.3177 | |
|
| 0.3851 | 0.54 | 2500 | 0.3026 | |
|
| 0.3178 | 0.64 | 3000 | 0.2766 | |
|
| 0.294 | 0.75 | 3500 | 0.2702 | |
|
| 0.2857 | 0.86 | 4000 | 0.2565 | |
|
| 0.305 | 0.96 | 4500 | 0.2434 | |
|
| 0.2224 | 1.07 | 5000 | 0.2427 | |
|
| 0.2122 | 1.18 | 5500 | 0.2419 | |
|
| 0.2026 | 1.28 | 6000 | 0.2402 | |
|
| 0.2155 | 1.39 | 6500 | 0.2258 | |
|
| 0.2277 | 1.5 | 7000 | 0.2239 | |
|
| 0.2115 | 1.61 | 7500 | 0.2209 | |
|
| 0.194 | 1.71 | 8000 | 0.2191 | |
|
| 0.2329 | 1.82 | 8500 | 0.2163 | |
|
| 0.1781 | 1.93 | 9000 | 0.2114 | |
|
| 0.154 | 2.03 | 9500 | 0.2148 | |
|
| 0.1722 | 2.14 | 10000 | 0.2129 | |
|
| 0.1329 | 2.25 | 10500 | 0.2114 | |
|
| 0.1535 | 2.35 | 11000 | 0.2076 | |
|
| 0.1414 | 2.46 | 11500 | 0.2057 | |
|
| 0.1618 | 2.57 | 12000 | 0.2033 | |
|
| 0.1486 | 2.68 | 12500 | 0.2028 | |
|
| 0.1302 | 2.78 | 13000 | 0.2023 | |
|
| 0.1314 | 2.89 | 13500 | 0.2020 | |
|
| 0.1392 | 3.0 | 14000 | 0.2005 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|