lewtun's picture
lewtun HF staff
Add evaluation results on the qnli config of glue
7f7a3a1
|
raw
history blame
3.38 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
  - fnet-bert-base-comparison
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: bert-base-cased-finetuned-qnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QNLI
          type: glue
          args: qnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9099395936298736
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: qnli
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9099395936298736
            verified: true
          - name: Precision
            type: precision
            value: 0.9181717655731663
            verified: true
          - name: Recall
            type: recall
            value: 0.9022093444404201
            verified: true
          - name: AUC
            type: auc
            value: 0.9661807651300457
            verified: true
          - name: F1
            type: f1
            value: 0.9101205699671172
            verified: true
          - name: loss
            type: loss
            value: 0.3985599875450134
            verified: true

bert-base-cased-finetuned-qnli

This model is a fine-tuned version of bert-base-cased on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3986
  • Accuracy: 0.9099

The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

This model is trained using the run_glue script. The following command was used:

#!/usr/bin/bash

python ../run_glue.py \\n  --model_name_or_path bert-base-cased \\n  --task_name qnli \\n  --do_train \\n  --do_eval \\n  --max_seq_length 512 \\n  --per_device_train_batch_size 16 \\n  --learning_rate 2e-5 \\n  --num_train_epochs 3 \\n  --output_dir bert-base-cased-finetuned-qnli \\n  --push_to_hub \\n  --hub_strategy all_checkpoints \\n  --logging_strategy epoch \\n  --save_strategy epoch \\n  --evaluation_strategy epoch \\n```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.337         | 1.0   | 6547  | 0.9013   | 0.2448          |
| 0.1971        | 2.0   | 13094 | 0.9143   | 0.2839          |
| 0.1175        | 3.0   | 19641 | 0.9099   | 0.3986          |


### Framework versions

- Transformers 4.11.0.dev0
- Pytorch 1.9.0
- Datasets 1.12.1
- Tokenizers 0.10.3