metadata
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-cased-finetuned-wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE WNLI
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.4647887323943662
bert-base-cased-finetuned-wnli
This model is a fine-tuned version of bert-base-cased on the GLUE WNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.6996
- Accuracy: 0.4648
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
This model is trained using the run_glue script. The following command was used:
#!/usr/bin/bash
python ../run_glue.py \
--model_name_or_path bert-base-cased \
--task_name wnli \
--do_train \
--do_eval \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 2e-5 \
--num_train_epochs 5 \
--output_dir bert-base-cased-finetuned-wnli \
--push_to_hub \
--hub_strategy all_checkpoints \
--logging_strategy epoch \
--save_strategy epoch \
--evaluation_strategy epoch \
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7299 | 1.0 | 40 | 0.6923 | 0.5634 |
0.6982 | 2.0 | 80 | 0.7027 | 0.3803 |
0.6972 | 3.0 | 120 | 0.7005 | 0.4507 |
0.6992 | 4.0 | 160 | 0.6977 | 0.5352 |
0.699 | 5.0 | 200 | 0.6996 | 0.4648 |
Framework versions
- Transformers 4.11.0.dev0
- Pytorch 1.9.0
- Datasets 1.12.1
- Tokenizers 0.10.3