metadata
language: cnh
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Wav2Vec2 Large 53 Hakha Chin by Gunjan Chhablani
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice cnh
type: common_voice
args: cnh
metrics:
- name: Test WER
type: wer
value: 31.38
Wav2Vec2-Large-XLSR-53-Hakha-Chin
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Hakha Chin using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "cnh", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh/")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the Portuguese test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "cnh", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\/]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 31.38 %
Training
The Common Voice train
and validation
datasets were used for training. The script used for training can be found here.
The parameters passed were:
#!/usr/bin/env bash
python run_common_voice.py \\
--model_name_or_path="facebook/wav2vec2-large-xlsr-53" \\
--dataset_config_name="pt" \\
--output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt \\
--cache_dir=/workspace/data \\
--overwrite_output_dir \\
--num_train_epochs="30" \\
--per_device_train_batch_size="32" \\
--per_device_eval_batch_size="32" \\
--evaluation_strategy="steps" \\
--learning_rate="3e-4" \\
--warmup_steps="500" \\
--fp16 \\
--freeze_feature_extractor \\
--save_steps="500" \\
--eval_steps="500" \\
--save_total_limit="1" \\
--logging_steps="500" \\
--group_by_length \\
--feat_proj_dropout="0.0" \\
--layerdrop="0.1" \\
--gradient_checkpointing \\
--do_train --do_eval \\
Notebook containing the evaluation can be found here.