gcperk20's picture
Model save
0aaacb7
|
raw
history blame
3.02 kB
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-tiny-patch16-224-finetuned-piid
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: val
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7625570776255708
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deit-tiny-patch16-224-finetuned-piid
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5426
- Accuracy: 0.7626
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2274 | 0.98 | 20 | 1.1185 | 0.4658 |
| 0.8485 | 2.0 | 41 | 0.8690 | 0.6119 |
| 0.6793 | 2.98 | 61 | 0.8749 | 0.6073 |
| 0.6028 | 4.0 | 82 | 0.6864 | 0.6804 |
| 0.5693 | 4.98 | 102 | 0.5618 | 0.7717 |
| 0.5092 | 6.0 | 123 | 0.5958 | 0.7260 |
| 0.3788 | 6.98 | 143 | 0.6444 | 0.7352 |
| 0.4106 | 8.0 | 164 | 0.5277 | 0.7443 |
| 0.3716 | 8.98 | 184 | 0.6081 | 0.7352 |
| 0.3466 | 10.0 | 205 | 0.4976 | 0.7580 |
| 0.3587 | 10.98 | 225 | 0.5429 | 0.7443 |
| 0.2661 | 12.0 | 246 | 0.4933 | 0.7763 |
| 0.2628 | 12.98 | 266 | 0.5078 | 0.7671 |
| 0.2473 | 14.0 | 287 | 0.5264 | 0.7945 |
| 0.2633 | 14.98 | 307 | 0.5262 | 0.7671 |
| 0.2017 | 16.0 | 328 | 0.5509 | 0.7763 |
| 0.1861 | 16.98 | 348 | 0.5513 | 0.7443 |
| 0.2031 | 18.0 | 369 | 0.5516 | 0.7580 |
| 0.1604 | 18.98 | 389 | 0.5430 | 0.7671 |
| 0.2346 | 19.51 | 400 | 0.5426 | 0.7626 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1