Edit model card

swin-tiny-patch4-window7-224-finetuned-piid

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5715
  • Accuracy: 0.7854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2088 0.98 20 1.1661 0.4521
0.7545 2.0 41 0.8866 0.6073
0.6281 2.98 61 0.7788 0.6849
0.5939 4.0 82 0.6443 0.7397
0.5254 4.98 102 0.5097 0.7808
0.5583 6.0 123 0.5715 0.7854
0.3463 6.98 143 0.6163 0.7352
0.3878 8.0 164 0.5671 0.7671
0.3653 8.98 184 0.5690 0.7580
0.3529 10.0 205 0.5940 0.7580
0.301 10.98 225 0.6303 0.7626
0.2639 12.0 246 0.5725 0.7763
0.2847 12.98 266 0.6280 0.7717
0.25 14.0 287 0.5975 0.7717
0.2472 14.98 307 0.5821 0.7671
0.1676 16.0 328 0.6456 0.7626
0.1327 16.98 348 0.6117 0.7671
0.1977 18.0 369 0.6988 0.7489
0.1602 18.98 389 0.6448 0.7671
0.1785 19.51 400 0.6333 0.7717

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
7
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gcperk20/swin-tiny-patch4-window7-224-finetuned-piid

Finetuned
(467)
this model

Evaluation results