qwen1.5-14B-RM-Lora / README.md
gctian's picture
Update README.md
716f66e verified
---
base_model: Qwen/Qwen1.5-14B-Chat
library_name: peft
license: other
metrics:
- accuracy
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: 20240819-183631_rm_qwen-rm-1e-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 20240819-183631_rm_qwen-rm-1e-5
在角色扮演质量评价数据集上,基于Qwen1.5-14B-Chat微调的Reward奖励模型LORA,可用来对角色扮演模型的回复进行打分。
This model is a fine-tuned version of [Qwen/Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) on the all_reward_cutoff_6000 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6893
- Accuracy: 0.6641
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.075 | 0.0431 | 50 | 1.0182 | 0.4932 |
| 1.0505 | 0.0863 | 100 | 0.9944 | 0.5010 |
| 0.9387 | 0.1294 | 150 | 0.9101 | 0.5049 |
| 0.92 | 0.1726 | 200 | 0.9020 | 0.5049 |
| 0.9531 | 0.2157 | 250 | 0.8868 | 0.5223 |
| 0.849 | 0.2589 | 300 | 0.8567 | 0.5340 |
| 0.8897 | 0.3020 | 350 | 0.8523 | 0.5262 |
| 0.8512 | 0.3452 | 400 | 0.8105 | 0.5262 |
| 0.7854 | 0.3883 | 450 | 0.7994 | 0.5107 |
| 0.8147 | 0.4315 | 500 | 0.7859 | 0.5398 |
| 0.8075 | 0.4746 | 550 | 0.7566 | 0.5553 |
| 0.8282 | 0.5178 | 600 | 0.7454 | 0.5146 |
| 0.7524 | 0.5609 | 650 | 0.7317 | 0.4990 |
| 0.7338 | 0.6041 | 700 | 0.7267 | 0.5340 |
| 0.7909 | 0.6472 | 750 | 0.7111 | 0.5612 |
| 0.7783 | 0.6904 | 800 | 0.7211 | 0.5301 |
| 0.7895 | 0.7335 | 850 | 0.7070 | 0.5592 |
| 0.6881 | 0.7767 | 900 | 0.7710 | 0.5379 |
| 0.7137 | 0.8198 | 950 | 0.6908 | 0.5806 |
| 0.6924 | 0.8630 | 1000 | 0.6857 | 0.6 |
| 0.7275 | 0.9061 | 1050 | 0.6835 | 0.5767 |
| 0.67 | 0.9493 | 1100 | 0.6888 | 0.5709 |
| 0.6787 | 0.9924 | 1150 | 0.6860 | 0.5961 |
| 0.7012 | 1.0356 | 1200 | 0.6847 | 0.5709 |
| 0.6765 | 1.0787 | 1250 | 0.6961 | 0.5786 |
| 0.7052 | 1.1219 | 1300 | 0.6881 | 0.6058 |
| 0.6804 | 1.1650 | 1350 | 0.6778 | 0.6097 |
| 0.6644 | 1.2082 | 1400 | 0.6810 | 0.6194 |
| 0.6566 | 1.2513 | 1450 | 0.6820 | 0.6136 |
| 0.7024 | 1.2945 | 1500 | 0.6745 | 0.6117 |
| 0.7241 | 1.3376 | 1550 | 0.6698 | 0.6136 |
| 0.7378 | 1.3808 | 1600 | 0.6734 | 0.6058 |
| 0.6584 | 1.4239 | 1650 | 0.6994 | 0.6 |
| 0.6724 | 1.4671 | 1700 | 0.6715 | 0.6097 |
| 0.6774 | 1.5102 | 1750 | 0.6700 | 0.6136 |
| 0.6653 | 1.5534 | 1800 | 0.6696 | 0.6097 |
| 0.6641 | 1.5965 | 1850 | 0.6733 | 0.5981 |
| 0.7241 | 1.6397 | 1900 | 0.6653 | 0.5961 |
| 0.6496 | 1.6828 | 1950 | 0.6761 | 0.6117 |
| 0.662 | 1.7260 | 2000 | 0.6729 | 0.6039 |
| 0.7049 | 1.7691 | 2050 | 0.6758 | 0.6136 |
| 0.6483 | 1.8123 | 2100 | 0.6742 | 0.6136 |
| 0.678 | 1.8554 | 2150 | 0.6696 | 0.6311 |
| 0.678 | 1.8986 | 2200 | 0.6690 | 0.6233 |
| 0.6953 | 1.9417 | 2250 | 0.6624 | 0.6252 |
| 0.6969 | 1.9849 | 2300 | 0.6725 | 0.6369 |
| 0.6492 | 2.0280 | 2350 | 0.6568 | 0.6485 |
| 0.6572 | 2.0712 | 2400 | 0.6698 | 0.6447 |
| 0.6204 | 2.1143 | 2450 | 0.6550 | 0.6544 |
| 0.6479 | 2.1575 | 2500 | 0.6610 | 0.6447 |
| 0.6954 | 2.2006 | 2550 | 0.6637 | 0.6680 |
| 0.5668 | 2.2438 | 2600 | 0.6660 | 0.6583 |
| 0.6185 | 2.2869 | 2650 | 0.6793 | 0.6680 |
| 0.5314 | 2.3301 | 2700 | 0.6752 | 0.6718 |
| 0.6406 | 2.3732 | 2750 | 0.6681 | 0.6563 |
| 0.7011 | 2.4164 | 2800 | 0.6722 | 0.6680 |
| 0.6195 | 2.4595 | 2850 | 0.6644 | 0.6757 |
| 0.6675 | 2.5027 | 2900 | 0.6530 | 0.6602 |
| 0.5796 | 2.5458 | 2950 | 0.6489 | 0.6602 |
| 0.6148 | 2.5890 | 3000 | 0.6675 | 0.6680 |
| 0.6293 | 2.6321 | 3050 | 0.6685 | 0.6369 |
| 0.6095 | 2.6753 | 3100 | 0.6718 | 0.6621 |
| 0.5422 | 2.7184 | 3150 | 0.6905 | 0.6485 |
| 0.6089 | 2.7616 | 3200 | 0.6814 | 0.6544 |
| 0.6238 | 2.8047 | 3250 | 0.6739 | 0.6466 |
| 0.7386 | 2.8479 | 3300 | 0.6622 | 0.6485 |
| 0.6166 | 2.8910 | 3350 | 0.6567 | 0.6544 |
| 0.5866 | 2.9342 | 3400 | 0.6616 | 0.6505 |
| 0.6348 | 2.9773 | 3450 | 0.6634 | 0.6563 |
| 0.5907 | 3.0205 | 3500 | 0.6642 | 0.6583 |
| 0.4985 | 3.0636 | 3550 | 0.6904 | 0.6544 |
| 0.53 | 3.1068 | 3600 | 0.6926 | 0.6466 |
| 0.5728 | 3.1499 | 3650 | 0.6939 | 0.6544 |
| 0.5011 | 3.1931 | 3700 | 0.6916 | 0.6602 |
| 0.4987 | 3.2362 | 3750 | 0.6906 | 0.6544 |
| 0.5909 | 3.2794 | 3800 | 0.6882 | 0.6583 |
| 0.5194 | 3.3225 | 3850 | 0.6874 | 0.6524 |
| 0.5925 | 3.3657 | 3900 | 0.6854 | 0.6602 |
| 0.4709 | 3.4088 | 3950 | 0.6879 | 0.6621 |
| 0.5317 | 3.4520 | 4000 | 0.6886 | 0.6602 |
| 0.5821 | 3.4951 | 4050 | 0.6889 | 0.6660 |
| 0.5887 | 3.5383 | 4100 | 0.6891 | 0.6641 |
| 0.5362 | 3.5814 | 4150 | 0.6879 | 0.6641 |
| 0.4971 | 3.6246 | 4200 | 0.6888 | 0.6641 |
| 0.5009 | 3.6677 | 4250 | 0.6899 | 0.6641 |
| 0.5813 | 3.7109 | 4300 | 0.6887 | 0.6621 |
| 0.6147 | 3.7540 | 4350 | 0.6891 | 0.6641 |
| 0.6033 | 3.7972 | 4400 | 0.6891 | 0.6641 |
| 0.565 | 3.8403 | 4450 | 0.6891 | 0.6660 |
| 0.5044 | 3.8835 | 4500 | 0.6893 | 0.6641 |
| 0.613 | 3.9266 | 4550 | 0.6894 | 0.6660 |
| 0.4614 | 3.9698 | 4600 | 0.6896 | 0.6641 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.43.4
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1